Wednesday, August 17, 2016

H review 2016 draft

Hien FY16 Draft

Core Values

Accountability (4)

Deals with others in a straightforward and honest manner, is accountable for actions,

maintains confidentiality, supports company values, conveys good news and bad.

-- -- -- -- -- -- -

Hien has consistently demonstrated over the years of her straightforwardness and honesty.

She takes her job assignment with ownership. She does not hesitate in taking responsibility

when mistakes are made.

I can count on Hien to complete her work on time and to keep me updated of her work


Customer Service(4)

Handles customer questions and complaints, communicates with customers, handle

service problems politely and efficiently, always available for customers, follows

procedure to solve customer problems, understands company products and

services, maintains pleasant and professional image.

-- -- -- -- -- -- -- -

In general, Hien provides customer service well.

Hien has worked well in her current role for almost 5 years. She follows company policies and

procedures, communicates effectively with people, cares about her customers and always tries to help

solve their concerns. Hien is flexible, provides service on time, and maintains a pleasant image.

Outside of Finance department, Hien also provides her help to people in lending, HR,

Childcare in AP related issues as Imee’s backup.


Meets all team deadlines and responsibilities, listens to others and values opinions,

helps team leader to meet goals, welcomes newcomers and promotes a team


-- -- -- -- -- -- -- -- -

Hien works well in teams, receives great satisfaction by working and helping others. She

cares about helping the Finance team and other LIIF colleagues to achieve their goals. Hien

is able to meet deadlines and she communicates with me if any issues arise. She is a team

player and can adjust her job schedule to help cover AP to meet deadlines.

There had been a restructuring of Finance Department in FY14 with the increased workload

for all staff. Hien has provided strong support and helped the team meet deadlines and

expectations. In working on RLF 120-day reporting, she stayed late to make sure that our

reports were sent out before the deadline. She helped collect grant information requested

by BOE in LIIF’s claim of PPT tax exemption. She communicated well with Child Care

people and was able to get grant data on time.

Role Specific Competencies

Dependability (3)

Meets commitments, works independently, accepts accountability, handles change,

sets personal standards, stays focused under pressure, meets

attendance/punctuality requirements.

-- -- -- -- -- -- -- -- -- -- -- -

Hien has been consistent in taking care of her responsibility area. She has helped me with

BOE request, SF and LA county property tax exemption claim. I can count on her to

complete tasks on time. Hien keeps doing a good job in AP. She pays attention to details,

follows company procedures, puts in good control in AP process, monitors the 1099

contract agreement, and makes sure that the required documents are received before

paying invoices. She follows up with program people ensuring that the questions were

answered and information provided was correct.

When handling the IT fix asset payment, she is affirmative in asking questions, receipts, and

performs Excel calculations to figure out the amount for the depreciation. I can count on

Hien to produce good quality of work and getting AP done on time.


Tackles problems and takes independent action, seeks out new responsibilities, acts

on opportunities, generates new ideas, practices self-development.

-- -- -- -- -- -- -- -

Hien takes initiates in her administrative duties such as filing and helps keeping the Finance

team well organized, and she is in interested in learning more accounting work such as

separating checks, voiding invoices and handling more questions from the customers.

However, it seems that Hien has limited desires in learning higher level and broader areas

of accounting work.

If Hien wants to expand her skill, knowledge, and grow further in accounting career, she

would need to demonstrate more self-motivation, attitude of and interest for learning, and

put in more dedication, self-direction, and effort.  These will help Hien to earn more trust

and confidence from others and take on more complicated accounting work.

Interpersonal Skills (4)

Has good listening skills, builds strong relationships, is flexible/open-minded,

negotiates effectively, solicits performance feedback and handles constructive


-- -- -- -- -- -- -- -- -- --

In general Hien has good interpersonal skill and works well with people in LIIF organization.

Hien likes to build good connection and relationship with people. However, there were times

that I feel Hien need to control her non-work related conversations with other people, and I

brought up this issue to her attention in the mid-year evaluation. Since then, Hien has made

progress and she has tried to monitor her casual and social conversation time with other

people at work to maintain a professional work relationship and environment.

(keep this as my talking example: Talk to Sun, Robin. Also, should help in generate possible

working environment, not passing on the negative working to others, so made Robin angry.)

Quality and Analysis Skills (3)

Is attentive to detail and accuracy, breaks down problems into smaller components, I

committed to excellence, looks for improvements continuously, can simplify and

process complex issues, monitors quality levels, finds root cause and owns/acts on

problems, understands the difference between critical and unimportant facts.

-- -- -- -- -- -- -- -

Hien has done a great job in AP: she pays attention to details, puts in good control in

collecting required documents, receipts, and uses the correct GL coding.  Outside of AP

area, she has not been able to do work of more analytical nature. Hien can follow clear

guidelines, model work, and well-established schedules provided by other people, but she is

limited in creating higher level of worksheet by herself. Over the years there have been new

items added to Hien’s job list, such as 457b contribution. She is learning to analyze the

result from investment report and explain the discrepancies.  More practice and hands-on

work like this type will help Hien accumulate and improve her accounting knowledge

and analytical skills. I recommend Hien take excel class to help her in further career growth.


Results Focus (3)

Targets and achieves results, sets challenging goals, prioritizes tasks, overcomes

obstacles, accepts accountability, sets team standards and responsibilities

-- -- -- -- -- -- --

Hien is able to focus on AP area of work during month-end closing, or as Imee’s back-up. I

can count on her to deliver accurate AP work and expenditure review on time.

As mentioned in above, she stayed late to complete the 120 day annual report. After all

reports were sent out, she checked the compliance email list to make sure that there was

no one missing reports.

In this year, we added into AP 1099 vender review, and some other new procedure and

requirement. Hien has learned the key elements in vendor set up area, and she reviewed

thoroughly when making payment. Her effort made in those detail reviews will help our year-

end 1099 filing.

I would like to see Hien sets challenging goals gradually expend her scope of work and be

able to take on more complex tasks, as LIIF grows quickly and we are all challenged in

terms of work load and job complexity.

Tuesday, August 9, 2016

Holberton School: An Incoming SW Engineer Student' Bio

I started as a Fortran and COBOL programmer when I was doing my master thesis in econometrics in Peking University back in 1983-1985. I coded COBOL on  IBM system 370 with MVS as its operating system, I cut my teeth on MVS learning and using JCL(batch processing scripting  in MVS, kind of like Unix shell scripting) to program a JCL job for calling an IBM COBOL compiler utility. compiling my COBOL source code,  making it a “load module”,  and  actually executing  my COBOL program (with  an “EXEC PGM= load module” statement in JCL program). 

I went on to University of Geneva in Switzerland working as an econometrics visiting scholar, and later on went to US and graduated from UCLA’s MBA program in 1992. Since then I have worked in corporate data analysis, data mining, and IT departments for Oregon Health Division, BlueshieldBlueCrosss of Oregon, Providian Financial in San Francisco, encompassing statistical modeling, SAS programming on IBM System 390 (OS390), Teradata/sysbase/oracle/Informix database, DBA, SQL, ETL and Unix Shell scripting, SAS application development, etc. 

In the last few years, I have worked as a consultant for different Chinese companies including Travelsky Technology (TravelSky Technology Limited is a Chinese State-owned enterprise (SOE) and the dominant provider of information technology solutions to air travel and tourism industries in china), working on all kinds of projects including machine learning projects such as “Predicting Airfare Price by SVM”.

In this particular project, we were challenged at the time with the large dataset with no explicit links between ticket  records, making it a very difficult to analyze price changes of an individual round-trip.

We therefore started  developing a SVM model that generalizes the properties of all records in the dataset, and to train a SVM as a binary pricing classifier to distinguish between ”expensive” and ”cheap” of all tickets (transaction records) processed. 

I have in recent years developed strong interests in working with languages such as Ruby, Javascripts, python, Java, C++,  etc, and I want to grow myself into a full-stack developer,  as the next step in my career.

With strong knowledge, skills and experiences in databases systems (including RDMS, "hierarchical", "network" database systems) , and applications developments in domain areas of  various business, plus my excellent communication and people skills, I would be a great team member in Holberton school.

I am very excited and looking forward to joining the next SW engineer class in Holberton School. 

Friday, May 6, 2016

Rule learner (or Rule Induction)

Rule learner (or Rule Induction)

It is also known as Separate-And-Conquer method. This method apply an iterative process consisting in first generating a rule that covers a subset of the training examples and then removing all examples covered by the rule from the training set. This process is repeated iteratively until there are no examples left to cover. The final rule set is the collection of the rules discovered at every iteration of the process [13]. Some examples of these kinds of systems are:
  • OneR
OneR or “One Rule” is a simple algorithm proposed by Holt. The OneR builds one rule for each attribute in the training data and then selects the rule with the smallest error rate as its ‘one rule’. To create a rule for an attribute, the most frequent class for each attribute value must be determined. The most frequent class is simply the class that appears most often for that attribute value. A rule is simply a set of attribute values bound to their majority class. OneR selects the rule with the lowest error rate. In the event that two or more rules have the same error rate, the rule is chosen at random.
R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91.
  • Ridor
Ridor algorithm is the implementation of a RIpple-DOwn Rule learner proposed by Gaines and Compton. It generates a default rule first and then the exceptions for the default rule with the least (weighted) error rate. Then it generates the “best” exceptions for each exception and iterates until pure. Thus it performs a tree-like expansion of exceptions. The exceptions are a set of rules that predict classes other than the default. IREP is used to generate the exceptions.
Brian R. Gaines, Paul Compton (1995). Induction of Ripple-Down Rules Applied to Modeling Large Databases. J. Intell. Inf. Syst.. 5(3):211-228.
  • PART
PART is a separate-and-conquer rule learner proposed by Eibe and Witten. The algorithm producing sets of rules called ‘decision lists’ which are ordered set of rules. A new data is compared to each rule in the list in turn, and the item is assigned the category of the first matching rule (a default is applied if no rule successfully matches). PART builds a partial C4.5 decision tree in each iteration and makes the “best” leaf into a rule. The algorithm is a combination of C4.5 and RIPPER rule learning.
Eibe Frank, Ian H. Witten: Generating Accurate Rule Sets Without Global Optimization. In: Fifteenth International Conference on Machine Learning, 144-151, 1998.
  • JRip (RIPPER)
JRip implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W. Cohen as an optimized version of IREP. Ripper builds a ruleset by repeatedly adding rules to an empty ruleset until all positive examples are covered. Rules are formed by greedily adding conditions to the antecedent of a rule (starting with empty antecendent) until no negative examples are covered. After a ruleset is constructed, an optimization postpass massages the ruleset so as to reduce its size and improve its fit to the training data. A combination of cross-validation and minimum-description length techniques is used to prevent overfitting.
Cohen, W. W. 1995. Fast effective rule induction. In Machine Learning: Proceedings of the Twelfth International Conference, Lake Tahoe, California.
  • DecisionTable
DecisionTable algorithm builds and using a simple decision table majority classifier as proposed by Kohavi. It summarizes the dataset with a ‘decision table’ which contains the same number of attributes as the original dataset. Then, a new data item is assigned a category by finding the line in the decision table that matches the non-class values of the data item. DecisionTable employs the wrapper method to find a good subset of attributes for inclusion in the table. By eliminating attributes that contribute little or nothing to a model of the dataset, the algorithm reduces the likelihood of over-fitting and creates a smaller and condensed decision table.
Ron Kohavi: The Power of Decision Tables. In: 8th European Conference on Machine Learning, 174-189, 1995.
  • ConjunctiveRule
ConjuctiveRule algorithm implements a single conjunctive rule learner that can predict for numeric and nominal class labels. A rule consists of antecedents “AND”ed together and the consequent (class value) for the classification/regression. In this case, the consequent is the distribution of the available classes (or mean for a numeric value) in the dataset. If the test instance is not covered by this rule, then it’s predicted using the default class distributions/value of the data not covered by the rule in the training data. This learner selects an antecedent by computing the Information Gain of each antecedent and prunes the generated rule using Reduced Error Pruning (REP) or simple pre-pruning based on the number of antecedents. For classification, the Information of one antecedent is the weighted average of the entropies of both the data covered and not covered by the rule.

5 Responses to Rule learner (or Rule Induction)

  1. Salaam,
    very nice blog.
    i found the summaries to b well written😉
  2. Ridz says:
    Thank you. You have a very interesting blog too. I will add it to my list:)
  3. Spyder says:
    Thank You. Excellently Summarized.
  4. Anonymous says:
    nice blog brother
    I have a request please
    I need deep information about “JRip” for a presentation
    Can you help me to find good resources ?
  5. Manal says:
    nice blog brother
    I have a request please
    I need deep information about “JRip” for a presentation
    Can you help me to find good resources ?

Translate this page
Apr 15, 2011 - 本文通过麦克斯韦方程组引入电磁场规范,指出库伦规范和洛仑兹规范只是众多电磁场规范中的两种较特殊的规范,最后推导出在静态场中库伦规范和 ...

Translate this page
Nov 10, 2011 - 这是讲的比较清楚的一个,且还包含其他规范,推荐 .... 项对应库仑场E ,? ?t 对应着感应库 r 场E 。 感b) 洛仑兹规范(Lorentz gauge) 洛仑兹 

电磁辐射中, 需要根据激发源来决定电磁场的性质, 而麦克斯韦方程组用电场强度 E r 和电磁感应强度 B 对电磁场进行描述,与激发源没有直接的联系,难以直接的描述电磁场, 因此,为了能够由激发源直接描述电磁场,引入了势函数的概念。

Translate this page
Apr 15, 2011 - 本文通过麦克斯韦方程组引入电磁场规范,指出库伦规范和洛仑兹规范只是众多电磁场规范中的两种较特殊的规范,最后推导出在静态场中库伦规范和 ...

Translate this page
Nov 10, 2011 - 这是讲的比较清楚的一个,且还包含其他规范,推荐 .... 项对应库仑场E ,? ?t 对应着感应库 r 场E 。 感b) 洛仑兹规范(Lorentz gauge) 洛仑兹 


洛仑兹规范6_自然科学_专业资料。本文通过麦克斯韦方程组引入电磁场规范 ,指出库伦规范和洛仑兹规范只是众多电磁场规范 中的两种较特殊的规范,最后推导出在静态场中库伦规范和洛仑兹规范具有相同的非齐次方程,说明了麦克斯韦方程组、洛仑兹规范与库伦规范都只是从不同的角度描述电磁场的运动规律,因此无论用何种方式描述电磁场,电磁场本身都没有改变。

论洛仑兹规范与库伦规范在静态场中的自恰性 洛仑兹规范与库伦规范在静态场中的 在静态场中 孙锴 (西安建筑科技大学 机电工程学院 ,陕西 西安 710055) 摘要: 摘要:本文通过麦克斯韦方程组引入电磁场规范 A, φ ,指出库伦规范和洛仑兹规范只是众 多电磁场规范 A, φ 中的两种较特殊的规范,最后推导出在静态场中库伦规范和洛仑兹规范 具有相同的非齐次方程, 说明了麦克斯韦方程组、 洛仑兹规范与库伦规范都只是从不同的角 度描述电磁场的运动规律,因此无论用何种方式描述电磁场,电磁场本身都没有改变。 关键词 关键词:洛仑兹规范;库伦规范;自恰性;矢量势;标量势 中图分类号: 中图分类号:O441.4; 0. 引言 . ( ) r ( ) r r 在电磁辐射中, 需要根据激发源来决定电磁场的性质, 而麦克斯韦方程组用电场强度 E r 和电磁感应强度 B 对电磁场进行描述,与激发源没有直接的联系,难以直接的描述电磁场, 因此,为了能够由激发源直接描述电磁场,引入了势函数的概念。 1. 电磁场的规范 A, φ 的引入 . 辐射电磁场中为了便于根据电荷电流计算场,常常使用标量势 φ 和矢量势 A 而非电场 ( ) r r r r 强度 E 和电磁感应强度 B 来描述电磁场。 真空中电磁场的麦克斯韦方程组的微分形式为: r ρ ??E = ε0 (1) r r ?B ?× E = ? ?t (2) r ??B = 0 r r r J ?E c 2? × B = + ε 0 ?t r ? ? (? × A) ≡ 0 (3) (4) 由矢量分析知旋度的散度为零,即: (5) 1 将(5)式代入(3)式,得 r r B = ?× A r (6) r 引入的矢势 A 只有横场部分具有确定的意义, 而其纵场部分可以任意取。 假定矢势 A 是 一个关于空间和时间的连续函数, ? 和 ? 可以交换微分次序。将(6)式代入(2)式,得 ?t r r r ? ?A ? × E = ? (? × A) = ?? × ?t ?t 整理,得 r ? r ?A ? ?=0 ?×?E + ? ?t ? ? ? ? × ?φ ≡ 0 (7) 由矢量分析知梯度的旋度度衡为零,即 (8) 比较(7)(8)式,引入标量势 φ ,得 、 r r ?A E=? ? ?φ ?t (9) 从(9)式可以看出,电场强度 E 不仅与标量势 φ 有关,还与矢量势 A 有关。矢量势 A 和标量势 φ 作为一组势函数,可以完备的描述一个辐射场,并且称 A, φ 为电磁场的规范。 2. 用电磁场的规范 A, φ 描述电磁场 将(9)式代入(1)式,得 r r r ( ) r ( ) r r ? ?A ? ρ ? ? ??? ? ?t ? ?φ ? = ε 0 ? ? 整理得 ? 2φ + r ? ρ ?? A = ? ε0 ?t (10) 将(9)式和(6)式同时代入(4)式,得 r r r J ? ?A c ?× ?× A = + (? ? ?φ ) ε 0 ?t ?t 2 ( ) 整理,得 r r 1 ?2 A r? r ? 1 ?φ ? A ? 2 2 = ? ? 0 J + ?? 2 + ? ? A? c ?t ? c ?t ? 2 (12) 2 从上面的推导我们可以看出, 麦克斯韦方程组中的四个方程分别独立推导出了四个标量 势 φ 和矢量势 A 的方程,他们分别是: r r r B = ?× A r r ?A E=? ? ?φ ?t ? 2φ + r ? ρ ?? A = ? ?t ε0 (6) (9) (10) r r 1 ?2 A r? r ? 1 ?φ ? A ? 2 2 = ? ? 0 J + ?? 2 + ? ? A? c ?t ? c ?t ? 2 (12) 势函数方程与麦克斯韦方程组的对应关系见表 1-1。 表 1-1. A, φ 规范的势函数方程的麦克斯韦方程组来源 麦克斯韦方程组 ( ) r (A,φ )规范的是函数方程 r r ρ ??E = ε0 ? 2φ + r ? ρ ?? A = ? ?t ε0 r r ?B ?× E = ? ?t r r ?A E=? ? ?φ ?t r ??B = 0 r r r J ?E c ?× B = + ε 0 ?t 2 2 r r B = ?× A r r 1 ?2 A r? r ? 1 ?φ ? A ? 2 2 = ? ? 0 J + ?? 2 + ? ? A? c ?t ? c ?t ? r r ?A 在静态场中,有 = 0 , E = ??φ ,因此 ?φ 是静电场的梯度,标量势 φ 是静电场的 ?t 电位函数。 3.静电场中洛仑兹规范过渡为库伦规范 .静电场中洛仑兹规范过渡为库伦规范 洛仑兹规范过渡 由亥姆霍兹定理知, 在无限空间中处处单值, 且导数连续有界而源分布在有限区域中的 矢量场 F 由其散度和旋度唯一确定。已知 B = ? × A ,若 ? ? A 也确定的话,矢量势 A 就 可以唯一确定。此时,规范 A, φ 可以唯一确定电磁场。 r r r r r ( ) r 3 由库伦规范: ? ? A = 0 ,得 r ? 2φ = ? ρ ε0 (13) r r 1 ?2 A r 1 ?φ ? 2 A ? 2 2 = ?? 0 J + ? 2 c ?t c ?t (14) r r ?A 在静态场中有 = 0 ,比较(9)式可知 E = ??φ 。因此 ?φ 是电场的梯度,标量势 φ ?t 是静电场的电位函数。 (13)式正是静电场的泊松方程,说明标量势 φ 是静电场的电位函数, 因此有 ?φ =0 ?t (14) 所以,在静态场中洛仑兹规范 ? ? A = ? 渡为库伦规范。 4.结束语 . r 1 ?φ = 0 。可见在静电场下,洛仑兹规范过 c 2 ?t 由以上推导可以看出麦克斯韦方程组,洛仑兹规范和库伦规范只是不同的角度描述同一 r r r 个电磁场。无论是选用麦克斯韦方程组的电场强度 E 和电磁感应强度 B ,还是选用洛仑兹 规范和库伦规范的 A, φ ,只要它们描述的是同一个电磁场,那么电场强度 E 、电磁感应强 度 B 、标量势 φ 和矢量势 A 就可以相互推导,其表现表现形式将是一致的。也就是说,在 同一个电磁场中标量势 φ 和矢量势 A 具有自恰性,表现的是同一个电磁场的不同表现形式。 ( ) r r r r 参考资料 [1] 郭硕鸿.电动力学[M].北京:人民教育出版社,1979. [2] 虞国寅,周国全.电动力学[M].武昌:武汉大学出版社,2008. Self-Consistency of Coulomb’s gauge and Lorentz’s gauge in the electromagnetostatic field Kai Sun (College of Mechanical and Electrical Engineering,Xi’an university of Architecture & Technology, Xi’an, Shannxi 710055, China) 4 Abstract: This paper proves that both Coulomb’s gauge and Loentz’s gauge are one of special forms of electromagnetic gauge (A,φ ) which discribes the same characteristics of motion of r Coulomb’s gauge and Loentz’s gauge electromagnetic field from different perspectives. Hence it derives the same form of nonhomogeneous equations from r electromagnetostatic field which proves that the selection of electromagnetic gauge A, φ has no effect to the electromagnetic field. Key words: Coulomb’s gauge; Loentz’s gauge; Self-Consistency; vector potential; scalar potential : 作者简介:孙锴,女, (1977-)西安建筑科技大学机电工程学院教师,主讲课程:电磁场与 电磁波 ( ) in the 5



第五章 电磁波的辐射 Electromagnetic Wave Radiation 本章所研究的问题是电磁波的辐射。 本章所研究的问题是电磁波的辐射。方 法和稳恒场情况一样, 当考虑由电荷、 法和稳恒场情况一样 , 当考虑由电荷 、 电 流分布激发电磁场的问题时, 流分布激发电磁场的问题时 , 引入势的概 念来描述电磁场比较方便。 念来描述电磁场比较方便。 本章首先把势的概念推广到一般变化电 磁场情况,然后通过势来解辐射问题。 磁场情况,然后通过势来解辐射问题。 本章主要内容 电磁场的矢势和标势 推迟势 电偶极辐射 电磁波的干涉和衍射 电磁场的动量 §5. 1 电磁场的矢势和标势 Vector and Scalar Potential of Electromagnetic r 1、用势 A, ?描述电磁场 为简单起见,讨论真空中的电磁场: 为简单起见,讨论真空中的电磁场: r ??? D= ρ r ? r ??×E = ? ?B ? ? ?t ? r ??? B = 0 r ? r r ?D ??×H = j + ? ?t ? r r r r D=ε0E, B = ?0H . 针对磁场 引入 r ?? B = 0 r r B =?× A r 的物理意义可由下式看出: A的物理意义可由下式看出: r S 即在任一时刻, 沿任一闭合回路L的线积 即在任一时刻,矢量 A沿任一闭合回路 的线积 分等于该时刻通过以L为边线的曲面 的磁通量。 为边线的曲面S的磁通量 分等于该时刻通过以 为边线的曲面 的磁通量。 ∫ L r v r v A? dl = ∫∫ B? ds r 不能像静电场那样直接引入电势。 对于电场 E不能像静电场那样直接引入电势。由 Faraday电磁感应定律可得: 电磁感应定律可得: 电磁感应定律可得 r r r r ?B ? ?A ?×E = ? = ? (?× A) = ??× ?t ?t ?t r ? r ?A? ?×? E+ ? = 0 ? ?t ? ? ? r r ?A E + = ?? ? ?t 是标势不 是静电势 即 r r ?A E = ?? ? ? ?t r r ?B =?× A ? r ?r ?A ? ?E = ?? ? ?t ? 电磁场和势之间的关系如下 r ?A r r = 0时,且 E = ?? ? a) 当 A 与时间无关, 与时间无关,即 且 ?t 就直接归结为电势; 这时 ?就直接归结为电势; 注意: 注意: ? ? 混为一谈。 与电势 r (E = ?? ) 混为一谈。因为在非稳恒情 况下, 不再是保守力场,不存在势能的概念, 况下, E 不再是保守力场,不存在势能的概念, 这就是说现在的 ?,在数值上不等于把单位正电 荷从空间一点移到无穷远处电场力所做的功。 荷从空间一点移到无穷远处电场力所做的功。为 了区别于静电场的电势, 了区别于静电场的电势,把这里的 ? 称为标势 (Scalar potential)。 。 c) 在时变场中r 磁场和电场是相互作用着的 在时变场中, , 整体, 整体,必须把矢势 A 和标势 ? 作为一个整体来描 述电磁场。 述电磁场。 r r ?A b) 绝对不要把 E = ?? ? 中的标势 ? ? ?t r ? 种等价的方式, 种等价的方式,但由于 E 、B 和 A、 之间是微分 方程的关系, 方程的关系,所以它们之间的关系不是一一对应 r 的,这是因为矢势 A 可以加上一个任意标量函数 r 的梯度, 的梯度,结果不影响 B,而这个任意标量函数 r r r ?A ? 要发生影响, 的梯度在 E = ?? ? 中对 E 要发生影响,但 r ?t r ?A ? 将 E = ?? ? 中的?与此融合也作相应的 ?t r 变换, 保持不变。 变换,则仍可使 E 保持不变。 2、规范变换和规范不变性 r r r ? r 虽然 E 和 B,以及A 和 是描述电磁场的两 r r 述变换式: 述变换式: r ψ为任意的标量函数,即ψ =ψ(x,t),作下 设 为任意的标量函数, r r r ?A→A = A+? ′ ψ ? ? ?ψ ? ? →?′ =? ? ?t ? r ′ 很容易证明: 于是我们得到了一组新的 A . ?′ ,很容易证明: r r r ′ ψ ψ ?× A = ?×(A+? ) = ?× A+?×(? ) r r = ?× A= B r ′ ?A ?ψ ? r ?? ′ ? ? = ?? ? ? ( ) ? (A+? ) ψ ?t ?t ?t r ? ?A ? = ?? + (? ) ? ? (? ) ? ψ ψ ?t ?t ?t r ?A r = ?? ? = E ? ?t r r 由此可见, 描述同一电磁场。 由此可见,(A′ . ?′) 和 (A. ?) 描述同一电磁场。 a) 库仑规范(Coulomb gauge) 库仑规范(Coulomb r r 库仑规范条件为 ?? A= 0,即规定 A 是一个 r 有旋无源场(横场)。 )。这个规范的特点是 有旋无源场(横场)。这个规范的特点是 E的纵 ?具有无旋性 , 场部分完全由? 描述(即 ?? 具有无旋性),横 描述( r r ?A 描述( 具有无源性)。 )。由 场部分由 A描述(即 具有无源性)。由 ?t r r ?A ? E = ?? ? ?t r r ?A 可见, 可见,??? 项对应库仑场 E ,? ?t 对应着感应 库 r 场E 。 感 b) 洛仑兹规范(Lorentz gauge) 洛仑兹规范(Lorentz 是一个有旋有源场( 定 A是一个有旋有源场(即 A 包含横场和纵场两 部分) 部分),这个规范的特点是把势的基本方程化为 特别简单的对称形式。 特别简单的对称形式。 r 1 ?? 洛仑兹规范条件为 ?? A+ 2 = 0 ,即规 C ?t r r ?t 3、达朗贝尔(d’ Alembert)方程 达朗贝尔(d’ Alembert)方程 从Maxwell’s equations r ? ? D= ρ ? ? r ?r ?A ? ?E = ?? ? ?t ? 2 r r D=ε0E r 所满足的方程,得到: 出发推导矢势 A 和标势 ?所满足的方程,得到: r r 1 ?? r ? 2r 1 ? A ) = ??0 j ?? A? 2 2 ??(?? A+ 2 ? c ?t c ?t ? r ? 2 ?? ? + ?? A= ? ρ ? ?t ε0 ? a) 采用库仑规范 上述方程化为 r (?? A= 0) ρ ? 2 ?? ? = ?ε ? 0 r ? 2 r ??2 A? 1 ? A ? 1 ? (? ) = ?? r ? 0j 2 2 2 ? c ?t c ?t ? r 1 ?? b) 采用洛仑兹规范( ?? A+ 2 采用洛仑兹规范( = 0) c ?t 上述方程化为 ? 2 ρ 1 ?2? ?? ? ? 2 2 = ? c ?t ε0 ? r ? 2 r ? 2r 1 ? A ?? A? c2 ?t2 = ??0 j ? 这就是所谓达朗贝尔 达朗贝尔( 方程。 这就是所谓达朗贝尔( d’ Alembert )方程。 4、举例讨论 试求单色平面电磁波的势 Solution: Solution: 单色平面电磁波在没有电荷, 单色平面电磁波在没有电荷,电流分布的自 由空间中传播,因而势方程(达朗贝尔方程在 Lorentz规范条件下)变为波动方程: 规范条件下) 规范条件下 变为波动方程: 2 ? 2 1 ?? ?? ? ? 2 2 = 0 ? c ?t r ? 2 r 1?A ??2 A? =0 2 2 ? c ?t ? 其解的形式为: 其解的形式为: ? =?0e ? ? rr ? r r i(k?x?ωt) ?A= A e 0 ? r 1 ?? 由Lorentz规范条件 ?? A+ 规范条件 = 0,即得 2 c ?t r r rr i(k?x?ω ) t 1 ik ? A+ 2 (?iω?) = 0 c c2 r r ?= k?A ω 磁波,这是因为: 磁波,这是因为: r 这表明, 这表明,只要给定了 A ,就可以确定单色平面电 r r r r r r r B = ?× A= ik × A= ik ×(A + A ) 纵 横 r r r r = ik × A +ik × A 纵 横 r r 对于单色平面波而言) 0(对于单色平面波而言) = ik × A r 横 r r r ?A E = ?? ? ? = ?ik? + iω A ?t r c2 r r r = ik( k ? A + iω ) A = ?i c [ ω 2 ω r r r r 2 k(k ? A ? k A ) ] c2 r r r = ?i k ×(k × A ) ω c r r = ? k ×B ω r r ? = ?cn×B 2 r r r 具有横向分量, 如果取 A = A ,即只取 A具有横向分量,那么 横 有 r r r r k ? A= k ? A = 0 横 c2 r r ? = k ? A= 0 从而得到: 从而得到: 因此有: 因此有: ω r r r r r r ?B = ?× A= ik × A= ik × A 横 ? r r ?r r r ?A ?A = ? = iω = iω 横 ? A A ?E = ?? ? ?t ?t ? r r 其中: 其中: (k ? A = 0) 如果采用库仑规范条件,势方程在自由空间中变 如果采用库仑规范条件, 为 ??2? = 0 ? r ? 2 r 1 ?2 A 1 ? ? ?? A? 2 2 ? 2 ? = 0 c ?t c ?t ? 当全空间没有电荷分布时, 当全空间没有电荷分布时,库仑场的标势 ? = 0 , 则只有 r r 1?A 2 ? A? 2 2 = 0 c ?t 2 其解的形式为 rr r r i(k?x?ωt) A= A e 0 由库仑规范条件得到 r r r 即保证了 A 只有横向分量,即 A= A ,从而得到 只有横向分量, 横 r r r ?? A=ik ? A= 0 r r r r r r ?B = ?× A=ik × A= ik × A横 ? r r ?r r r ?A ?A ?E = ??? ? = ? = iωA= iωA横 ?t ?t ? r (?? A= 0) 通过例子可看到: 通过例子可看到: 库仑规范的优点是: 库仑规范的优点是:它的标势 ? 描述库仑作 r 求出, 用,可直接由电荷分布 ρ 求出,它的矢势 A只有 横向分量, 横向分量,恰好足够描述辐射电磁波的两种独立 偏振。 偏振。 r 洛仑兹规范的优点是: 洛仑兹规范的优点是:它的标势 ? 和矢势 A r 构成的势方程具有对称性。 构成的势方程具有对称性。它的矢势 A的纵向部 的选择还可以有任意性, 分和标势 ? 的选择还可以有任意性,即存在多余 的自由度。尽管如此, 的自由度。尽管如此,它在相对论中显示出协变 因此,本书以后都采用洛仑兹规范。 性。因此,本书以后都采用洛仑兹规范。 Class is Over! Thank you! Boys and girls!

Wednesday, May 4, 2016

Potential Theory in Classical Probability, Potential theory, harmonic functions, Markov processes, stochas- ... of classical analytic potential theory: Green kernels, Laplace and Poisson.

Potential Theory--ICPT 94: Proceedings of the International ...
Josef Král - 1996 - ‎Mathematics
Proceedings of the International Conference on Potential Theory, Held in Kouty, Czech Republic, August 13-20, 1994 Josef Král ...

[PDF]Lectures on Potential Theory - Tata Institute of Fundamental Research
by M Brelot - ‎Cited by 231 - ‎Related articles
Lectures on Potential Theory. By. M. Brelot. Notes by. K. N. Gowrisankaran and. M. K. Venkatesha Murthy. Second edition, revised and enlarged with the help of ...
Missing: sgd

A little history of Submarine Groundwater Discharge (SGD ...
Jan 28, 2014 - Although people already used SGD as an important water source for ... these deviations and created the basis for the Potential Theory and the ...

[PDF]Potential Theory in Classical Probability
Nanyang Technological University
by N Privault - ‎Cited by 5 - ‎Related articles
Key words: Potential theory, harmonic functions, Markov processes, stochas- ... of classical analytic potential theory: Green kernels, Laplace and Poisson.
Missing: sgd

Tuesday, May 3, 2016

A Data-Mining Approach to Travel Price Forecasting
A Data-Mining Approach to Travel Price Forecasting
A Linear Quantile Mixed Regression Model for Prediction of Airline Ticket Prices

To Buy or Not to Buy: Mining Airfare Data to Minimize Ticket Purchase Price Oren Etzioni Dept. Computer Science University of Washington Seattle, Washington 98195 Craig A. Knoblock Information Sciences Institute University of Southern California Marina del Rey, CA 90292 Rattapoom Tuchinda Dept. of Computer Science University of Southern California Los Angeles, CA 90089 Alexander Yates Dept. Computer Science University of Washington Seattle, Washington 98195 ABSTRACT As product prices become increasingly available on the World Wide Web, consumers attempt to understand how corporations vary these prices over time. However, corporations change prices based on proprietary algorithms and hidden variables (e.g., the number of unsold seats on a flight). Is it possible to develop data mining techniques that will enable consumers to predict price changes under these conditions? This paper reports on a pilot study in the domain of airline ticket prices where we recorded over 12,000 price observations over a 41 day period. When trained on this data, Hamlet — our multi-strategy data mining algorithm — generated a predictive model that saved 341 simulated passengers $198,074 by advising them when to buy and when to postpone ticket purchases. Remarkably, a clairvoyant algorithm with complete knowledge of future prices could save at most $320,572 in our simulation, thus Hamlet’s savings were 61.8% of optimal. The algorithm’s savings of $198,074 represents an average savings of 23.8% for the 341 passengers for whom savings are possible. Overall, Hamlet saved 4.4% of the ticket price averaged over the entire set of 4,488 simulated passengers. Our pilot study suggests that mining of price data available over the web has the potential 


Danielle Hillman Prof. Paul Lande EC 220 03 18 February 2016

Predicting Airfare Prices Manolis Papadakis Introduction Airlines implement dynamic pricing for their tickets, and base their pricing decisions on demand estimation models. The reason for such a complicated system is that each flight only has a set number of seats to sell, so airlines have to regulate demand. In the case where demand is expected to exceed capacity, the airline may increase prices, to decrease the rate at which seats fill. On the other hand, a seat that goes unsold represents a loss of revenue, and selling that seat for any price above the service cost for a single passenger would have been a more preferable scenario. The purpose of this project was to study how airline ticket prices change over time, extract the factors that influence these fluctuations, and describe how they're correlated (essentially guess the models that air carriers use to price their tickets). Then, using that information, build a system that can help consumers make purchasing decisions by predicting how air ticket prices will evolve in the future. We focused our efforts on coach-class fares. Related Work There has been some previous work on building prediction models for airfare prices using Machine Learning techniques [1] [2] [3]. The various research groups have focused on mostly different sets of features and trained their models on different kinds of flights. A major distinction among these projects is the specific trend they are trying to predict. Specifically, we can categorize projects into 2 approaches: studying the factors that influence the average price of a flight [2], or those that influence the price of a specific flight in the days leading up to departure [1] [3]. We will use this distinction in the definition of our model. There also exist commercial services, like Bing Travel (which actually evolved from the work in [1]), that perform this kind of prediction, but their models are not made public. 

Quantum Field Theory II An introduction to Feynman diagrams A course for MPAGS Dr Sam T Carr University of Birmingham February 9, 2009

Linear response theory and the fluctuation-dissipation theorem There is a very strong link between correlation functions (fluctuations) and response functions to an external applied field (dissipation). For example, consider the expectation value %GS|ρˆ(!x,t)ρˆ(!x " ,t " )|GS#. (8.1) We have been thinking of this as a correlation function between two points and times. However, we can also think of it as applying some extra density at !x " ,t " and seeing how it affects the density at x,t. Time ordered correlation functions are what we have been learning to calculate using the diagrammatic technique. However, response functions are what experimentalists will measure - they will perturb the system in some way and see what it does in response. It is therefore very important for us to understand much better the relationship between response functions and correlation functions. In fact, the fluctuation-dissipation theory in it’s full glory can not be fully understood until we have looked at finite temperature Green functions - so we will revisit many of these concepts again later in Lecture 12. However, the importance of this topic means it is well worthwhile meeting it at least once before we leave the subject of zero temperature Green functions - which is the purpose of this lecture.

Operators and Matrices You’ve been using operators for years even if you’ve never heard the term. Differentiation falls into this category; so does rotation; so does wheel-alignment. In the subject of quantum mechanics, familiar ideas such as energy and momentum will be represented by operators. You probably think that pressure is simply a scalar, but no. It’s an operator.

Linearization, Trace and Determinant MAT308 Spring 2011 Scott Sutherland, Stony Brook University In order to analyze a system of nonlinear equations, one important aspect is the idea of linearization near a fixed point (or equilibrium solution). More specifically, suppose that we have a system of the form dX~ dt = F~ (X~ ), and furthermore that for some initial condition X~ 0 we have F~ (X~ 0) = ~0. Then the constant solution X~ (t) = X~ 0 is an equilibrium. That is, the trajectory in the phase plane is just a single point. We want to analyze what happens to solutions that start near such a solution
 A regression model for predicting optimal purchase timing for airline tickets William Groves and Maria Gini Department of Computer Science and Engineering, University of Minnesota {groves, gini} Abstract Optimal timing for airline ticket purchasing from the consumer’s perspective is challenging principally because buyers have insufficient information for reasoning about future price movements. This paper presents a model for computing expected future prices and reasoning about the risk of price changes. The proposed model is used to predict the future expected minimum price of all available flights on specific routes and dates based on a corpus of historical price quotes. Also, we apply our model to predict prices of flights with specific desirable properties such as flights from a specific airline, non-stop only flights, or multi-segment flights. By comparing models with different target properties, buyers can determine the likely cost of their preferences. We present the expected costs of various preferences for two high-volume routes. Performance of the prediction models presented is achieved by including instances of time-delayed features, by imposing a class hierarchy among the raw features based on feature similarity, and by pruning the classes of features used in prediction based on in-situ performance. Our results show that purchase policy guidance using these models can lower the average cost of purchases in the 2 month period prior to a desired departure. The proposed method compares favorably with a deployed commercial web site providing similar purchase policy recommendations. 1 Introduction Adversarial risk in the airline ticket domain exists in two contexts: the adversarial relationship between buyers and sellers, and the competitive relationships that exist between multiple airlines providing the equivalent service. Buyers are often seeking the lowest price on their travel, while sellers are seeking to keep overall revenue as high as possible to maximize profit. Simultaneously, each seller must consider the price movements of its competitors to ensure that its prices remain sufficiently competitive to achieve sufficient (but not too high) demand. It is impossible to effectively address the problem of optimizing decision making from the buyer’s point of view without also considering both types of adversarial relationships. Sellers (airlines) make significant long term investments in fixed infrastructure (airports, repair facilities), hardware (planes), and route contracts. The specific details of these long term decisions are intended to roughly match expected demand but often do not match exactly. Dynamic setting of prices is the mechanism that airlines use to increase the matching between their individual supply and demand profile in order to attain the greatest revenue. A central challenge in the airline ticket purchasing domain is the information asymmetry that exists between buyers and sellers. Airlines have the ability to mine significant databases of historical sales data to develop models for expected future demand for each flight. Demand for a specific flight is likely to vary over time and will also vary based on the pricing strategy adopted by the airline. For buyers, it is generally best to buy far in advance of a flight’s departure because the prices tend to increase dramatically as the departure date approaches. But, airlines often violate this principle and adjust prices downward to increase sales. We make two novel contributions in this work: (1) a method of automated optimal feature set generation from the data that leverages a hierarchicalization of the available features to efficiently compute a feature set is proposed; (2) the addition of time-delayed observations to the feature vector fed to the machine learning 1 algorithm is performed. This allows anticipation of trends and more complex relationships between variables. For instance, we address pricing behaviors up to and beyond 60 days prior to departure, and we consider purchasing a flight on any airline for a specific date and city pair (previous work only considers the cost of a specific pair of flight numbers from two specific airlines). These ideas are then experimentally applied to prediction in the real-world airline ticket purchase domain. This paper presents models that also accommodate preferences of passengers about the number of stops in the itinerary or the specific airline to use. We believe this prediction task is both a more difficult task and generates models that are more useful for actual airline passengers.
Machine Learning for Predicting Flight Ticket Prices Supervisor: Igor Kulev November 9, 2015 1 Overview and Goal Airline companies have the freedom to change the flight ticket prices at any moment. Travellers can save money if they choose to buy a ticket when its price is the lowest. The problem is how to determine when is the best time to buy flight ticket for the desired destination and period. Airline companies use many different variables to determine the flight ticket prices: indicator whether the travel is during the holidays, the number of free seats in the plane etc. Some of the variables are observed, but some of them are hidden. The goal of this project is to use machine learning techniques to model the behavior of flight ticket prices over the time. In order to build and evaluate the model, you will use data that contains historical flight ticket prices for particular routes. 2 Project Steps • Parse and preprocess the flight ticket data that will be given to you • Apply few different machine learning models on the data set • Evaluate and compare the models 3 Required Skills The student should have knowledge in Machine learning. The student should know how to work with some programming language for machine learning (for example Matlab). References [1] O. Etzioni, R. Tuchinda, C. A. Knoblock, and A. Yates, “To buy or not to buy: mining airfare data to minimize ticket purchase price,” in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2003, pp. 119– 128

Monday, May 2, 2016

gr 缩并是张量分析中特有的一种运算 爱因斯坦场方程里的张量都是有两个字母下标,因此叫做二阶(协变)张量。 爱因斯坦场方程中的所有张量都是二阶张量,因此爱因斯坦场方程完全可以写成矩阵的形式,即它也可以是一个矩阵方程

楼主:databit 时间:2013-10-08 15:06:00 点击:119109 回复:1644
脱水模式 给他打赏 只看楼主 阅读设置
上页 1 2 3 4 … 17 下页  到页 




楼主发言:395次 发图:46张
作者:现金社会012 时间:2013-10-08 15:09:45
来自 天涯社区客户端 | 举报 | 1楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 15:15:50



  爱因斯坦场方程里的张量都是有两个字母下标,因此叫做二阶(协变)张量。 爱因斯坦场方程中的所有张量都是二阶张量,因此爱因斯坦场方程完全可以写成矩阵的形式,即它也可以是一个矩阵方程。






举报 | 2楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 15:26:46





举报 | 3楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 15:40:39

  两个等号之间的内容是:里奇张量-度量张量*里奇标量/2,里奇张量描述的是黎曼空间的某种曲率,所以度量张量*里奇标量 描述的同样也是某种曲率,两种曲率的差被爱因斯坦(或物理学家们)看作是我们的宇宙所表现出来的曲率。
  第二个等号右边是一个 包含光速与万有引力常数的系数 与 能量-动量-应力张量 的乘积。因为 里奇张量-度量张量*里奇标量/2 是一个曲率,所以第二个等号右边的这一坨东西就同样是一个曲率。
举报 | 4楼 | 打赏 回复 | 评论
作者:乡村交易员辽 时间:2013-10-08 15:45:14
举报 | 5楼 | 打赏 回复 | 评论
作者:九味汤 时间:2013-10-08 15:50:29
来自 天涯社区客户端 | 举报 | 6楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 15:51:18
  假设有一个关系式,记做 A=B*C,其中A是利息,单位是元,B是本金,单位是元,C是每日的利率,是个无单位的纯数字。这样,A=B*C的含义就是在一定的本金和利率之下每天得到的利息是多少。

  现在某个奇怪的物理学家O1将关系式A=B*C做了些变形,记做 A=B*D,其中D=G*E*X,这里的G=c^2*qs/qm是万有引力常数,其中c是光速,qs是普朗克长度,qm是普朗克质量,物理学家O1令E=1/(c^2*qs),令E*X=C/G,则X就是个带有质量量纲的与每日的浮动利率C有关的变量。于是我们可以通过D=G*E*X以及E*X=C/G得到D=C,所以A=B*D与求利息的关系式A=B*C完全是一回事,仅仅是看上去复杂了些。




举报 | 7楼 | 打赏 回复 | 评论
作者:aloys_len 时间:2013-10-08 15:57:50
举报 | 8楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 15:58:18




举报 | 9楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 16:15:46
  能量可以表示为 E=mc^2
  动量可以表示为 P=mv
  力可以表示为 F=ma ,其中a=dv/dt是加速度
  所谓的能量密度无非就是将 E除以一个体积,应力无非就是压强,所以能量-动量-应力张量中的每一项确实都含有质量m这个量纲,且都是一次的。




  看到爱因斯坦场方程中那个明晃晃的 光速的四次方 了没?这东西可以将mG的量纲再消去一些。

举报 | 10楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 16:22:52




举报 | 11楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 16:29:49


举报 | 12楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 16:47:09


举报 | 13楼 | 打赏 回复 | 评论
作者:woshicuonan 时间:2013-10-08 16:50:24
来自 天涯社区客户端 | 举报 | 14楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 17:06:45




举报 | 15楼 | 打赏 回复 | 评论
作者:江上苇 时间:2013-10-08 17:17:19
举报 | 16楼 | 打赏 回复 | 评论
作者:交叉跑动 时间:2013-10-08 17:18:49
  我就替楼主顶一下帖子吧 顺便说一句 我实在是看不懂方程式
  所谓天体物理这一块的知识 我基本上是靠科幻电影来普及的
举报 | 17楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 17:21:19




  水星的实际轨迹和牛顿动力学所预测的有所偏差。水星轨道近日点的反常进动率最先于1859年由奥本·勒维耶在一个天体力学问题中发现。他分析了从1697年至1848年的水星凌日的时间纪录,并发现计算出的进动每100回归年便会和牛顿理论预测的相差38弧秒(之后重新估计为 43弧秒)。



  亨利·卡文迪什及约翰·冯·索尔德纳(Johann Von Soldner)分别于1784年(在未发布的手稿中)及1801年(于1804年发布)指出,牛顿引力预测星光经过大质量天体时会被弯曲。爱因斯坦于1911年只利用等效原理计算出与索尔德纳相同的数值。不过,爱因斯坦在1915年完成广义相对论时表示,他之前计算获得的(以及索尔德纳的)数值只是正确值的一半。爱因斯坦成了第一位正确计算出光线弯曲的物理学者。


  最初的准确度非常低。有些学者批评有系统误差(systematic error)和确认偏误的存在,然而之后对原始数据的重新分析指出,爱丁顿的分析是正确的。1922年日全食发生时,利克天文台重复进行了测量,得出的结果与1919年的相符。其后共进行了多次重复的实验,其中较著名的一次由德州大学于1973年进行。在之后几乎50年内,测量误差仍然无法减小,直到开始采用无线电波频率进行观测。到1960年代终于证实了光线弯曲的程度完全符合广义相对论的预测,而非该数值的一半。爱因斯坦环便是来自遥远星系光波被较近天体偏折后的结果。


  爱因斯坦在1907年从等效原理推导出光的引力红移效应,然而实际的天体物理学观测却很难进行。虽然沃尔特·亚当斯在1925已量度了这一效应,但要到庞德-雷布卡实验(Pound–Rebka experiment)于1959年利用极为敏感的穆斯堡尔效应测量位于哈佛大学杰弗逊塔顶部和底部的两个辐射源的相对红移,才确切证实了引力红移效应。实验结果完美地验证了广义相对论。这是第一次使用精确测量手法去证实广义相对论的实验。
举报 | 18楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 17:37:54






举报 | 19楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 17:42:20

举报 | 20楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 18:08:27
举报 | 22楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 18:40:34




举报 | 23楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 18:55:15





举报 | 24楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 20:01:18


  我们没有确实的证据证明 时间t与距离s一定是速度v的原因,还存在v与t二者是s的原因的可能性。
举报 | 25楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 20:15:13



举报 | 26楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-08 20:36:12
举报 | 27楼 | 打赏 回复 | 评论
作者:食肉不食马肝 时间:2013-10-09 06:39:23
来自 天涯社区客户端 | 举报 | 28楼 | 打赏 回复 | 评论
作者:naturalday1980 时间:2013-10-09 09:23:16
来自 天涯社区客户端 | 举报 | 29楼 | 打赏 回复 | 评论
作者:小酒两三盅 时间:2013-10-09 10:36:37
来自 天涯社区客户端 | 举报 | 30楼 | 打赏 回复 | 评论
作者:冷眼看世界2007 时间:2013-10-09 10:43:51

来自 天涯社区客户端 | 举报 | 31楼 | 打赏 回复 | 评论
作者:冷眼看世界2007 时间:2013-10-09 10:54:28
来自 天涯社区客户端 | 举报 | 32楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 13:24:29







举报 | 33楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 13:36:38





举报 | 35楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 13:58:10




举报 | 36楼 | 打赏 回复 | 评论
作者:安逸晨2013 时间:2013-10-09 15:00:59
  @databit 楼主,让你装……让你装……对于你这种人,我只想说三个字——好崇拜!
举报 | 37楼 | 打赏 回复 | 评论
作者:domibic_nong 时间:2013-10-09 15:07:06
来自 天涯社区客户端 | 举报 | 38楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 15:22:30







举报 | 39楼 | 打赏 回复 | 评论
作者:安逸晨2013 时间:2013-10-09 15:41:07
  @databit 38楼 2013-10-09 15:22:30
举报 | 40楼 | 打赏 回复 | 评论
作者:rpdhunter 时间:2013-10-09 15:47:15
举报 | 41楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 16:12:08







举报 | 42楼 | 打赏 回复 | 评论
作者:昨非今比拼 时间:2013-10-09 16:28:19
举报 | 43楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 16:29:42


举报 | 44楼 | 打赏 回复 | 评论
作者:腔骨娟儿一家亲 时间:2013-10-09 16:38:32
来自 天涯社区客户端 | 举报 | 45楼 | 打赏 回复 | 评论
作者:naturalday1980 时间:2013-10-09 16:47:19
来自 天涯社区客户端 | 举报 | 46楼 | 打赏 回复 | 评论
作者:loexcte 时间:2013-10-09 18:18:31
  拿楼主的例子来问,对于“一个人在山底,一个人在山顶,互相看对方的原子钟发射的脉冲信号有区别了”,我的问题是,这座山应该有多高,才会出现这种区别? 是不是,即便只有一个毫米,也会有区别?
举报 | 47楼 | 打赏 回复 | 评论
作者:塞外孤狼q 时间:2013-10-09 20:44:05
举报 | 48楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 22:04:59
  @塞外孤狼q 47楼 2013-10-09 20:44:05
  怎么下载全文,想打印出来看看,68039258 @qq 。com
举报 | 49楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-09 22:06:46
  @loexcte 46楼 2013-10-09 18:18:31
  拿楼主的例子来问,对于“一个人在山底,一个人在山顶,互相看对方的原子钟发射的脉冲信号有区别了”,我的问题是,这座山应该有多高,才会出现这种区别? 是不是,即便只有一个毫米,也会有区别?
举报 | 50楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-10 12:29:16



举报 | 51楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-10 13:18:15











举报 | 54楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-10 13:33:31




  我们都知道圆周率应该是一个常数 派 pi,但是爱因斯坦转盘的转动使得圆周率成为一个变量,所以对于转动的爱因斯坦转盘来说,这个空间就是弯曲空间。
举报 | 55楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-10 13:49:56




举报 | 56楼 | 打赏 回复 | 评论
作者:loexcte 时间:2013-10-10 14:02:25

举报 | 57楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-10 14:40:54






举报 | 58楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-10 14:57:53




举报 | 59楼 | 打赏 回复 | 评论
楼主:databit 时间:2013-10-10 15:17:16