固体的光散射讲座第一讲光散射的基本理论
www.wuli.ac.cn/CN/abstract/abstract27697.shtml - 轉為繁體網頁
由 劳浦东 著作 - 1984
摘要 “固体的光散射”讲座和读者见面了.它包括光散射的基本理论、晶格振动的光散射谱、自发喇曼散射、非线性光散射、共振喇曼散射和瑞利散射.拟自本期起每期一 ...固体的光散射讲座第四讲非线性喇曼散射 - 物理
www.wuli.ac.cn/CN/abstract/abstract27607.shtml - 轉為繁體網頁
由 王文澄 著作 - 1984
摘要 非线性喇曼散射是指由于分子的偶极矩或激活介质的宏观极化矢量与光电场强度呈非线性关系,所引起的喇曼散射过程.在自发散射过程的理论描述中,振动着的 ...固体的光散射讲座第五讲共振喇曼散射 - 物理
www.wuli.ac.cn/CN/abstract/abstract27622.shtml - 轉為繁體網頁
由 劳浦东 著作 - 1984
摘要 共振喇曼散射能够提供的信息和普通喇曼散射很不相同.在普通喇曼散射里,固体的光散射讲座第一讲光散射的基本理论_百度文库
wenku.baidu.com/view/e1dbea1910a6f524ccbf8536.html - 轉為繁體網頁
固体的光散射讲座第一讲光散射的基本理论--CNKI机构馆在线
lib.cnki.net/cjfd/WLZZ198408013.html轉為繁體網頁
固体的光散射讲座第一讲光散射的基本理论 - 数字出版物超市
mall.cnki.net/magazine/article/WLZZ198408013.htm轉為繁體網頁
固体中的光散射喇曼光谱在固体物理中的应用 - 吾喜杂志网
wuxizazhi.cnki.net/Search/WLZZ197801002.html轉為繁體網頁
固体中的光散射喇曼光谱在固体物理中的应用期刊界All ...
www.alljournals.cn/view_abstract.aspx?...轉為繁體網頁
固体的光散射讲座第三讲晶格振动的喇曼散射
www.cpsjournals.cn:8080/qkw/CN/article/.../628540.shtml轉為繁體網頁
掺Be分子束外延GaAs的喇曼光谱 - 欢迎访问《红外与毫米波 ...
journal.sitp.ac.cn/hwyhmb/.../ch/.../view_abstract.aspx?file... - 轉為繁體網頁
由 蒋最敏 著作 - 1989
固体的光散射讲座第二讲分子振动及其喇曼光谱[J].物理,1984(9). [16]. 汤寅生,
物質中存在的不均勻團塊使進入物質的光偏離入射方向而向四面八方散開,這種現象稱為光的散射,向四面八方散開的光,就是散射光。與光的吸收一樣,光的散射也會使通過物質的光的強度減弱。
1 定義
光傳播時因與物質中分子(原子)作用而改變其光強的空間分佈、偏振狀態或頻率的過程。當光在物質中傳播時,物質中存在的不均勻性(如懸浮微粒、密度起伏)也能導致光的散射(簡單地說,即光向四面八方散開)。藍天、白雲、曉霞、彩虹、霧中光,曙光的傳播等等常見的自然現象中都包含著光的散射(光的反射)現象。
2 具體說明
光散射分類
a.廷德爾散射
顆粒渾濁媒質(顆粒線度和光的波長差不多)的散射,散射光的強度和入射光的波長的關係不明顯,散射光的波長和入射光的波長相同。
b.分子散射
光通過純凈媒質時,由於構成該媒質的分子密度漲落而被散射的現象。分子散射的光強度和入射光的波長有關,但散射光的波長仍和入射光相同。
光通過不均勻介質時部分光偏離原方向傳播的現象。偏離原方向的光稱散射光,散射光一般為偏振光(線偏振光或部分偏振光,見光的偏振)。散射光的波長不發生變化的有廷德耳散射、分子散射等,散射光波長發生改變的有拉曼散射、布里淵散射和康普頓散射等。廷德耳散射由英國物理學家J.廷德耳首先研究,是由均勻介質中的懸浮粒子引起的散射,如空氣中的煙、霧、塵埃,以及浮濁液、膠體等引起的散射均屬此類。真溶液不會產生廷德耳散射,故化學中常根據有無廷德耳散射來區別膠體和真溶液。分子散射是由於物質分子的熱運動造成的密度漲落而引起的散射,例如純凈氣體或液體中發生的微弱散射。
3 產生原因
介質中存在大量不均勻小區域是產生光散射的原因,有光入射時,每個小區域成為散射中心,向四面八方發出同頻率的次波,這些次波間無固定相位關係,它們在某方向上的非相干疊加形成了該方向上的散射光。J.W.S.瑞利研究了線度比波長要小的微粒所引起的散射,並於1871年提出了瑞利散射定律:特定方向上的散射光強度與波長λ的四次方成反比;一定波長的散射光強與(1+cosθ)成正比,θ為散射光與入射光間的夾角,稱散射角。凡遵守上述規律的散射稱為瑞利散射。根據瑞利散射定律可解釋天空和大海的蔚藍色和夕陽的橙紅色。
對線度比波長大的微粒,散射規律不再遵守瑞利定律,散射光強與微粒大小和形狀有複雜的關係。G.米和P.J.W.德拜分別於1908年和1909年以球形粒子為模型詳細計算了對電磁波的散射,米氏散射理論表明,只有當球形粒子的半徑a<0.3λ/2π時,瑞利的散射規律才是正確的,a較大時,散射光強與波長的關係就不十分明顯了。因此,用白光照射由大顆粒組成的散射物質時(如天空的雲等),散射光仍為白光。氣體液化時,在臨界狀態附近,密度漲落的微小區域變得比光波波長要大,類似於大粒子,由大粒子產生的強烈散射使原來透明的物質變混濁,稱為臨界乳光。
波長發生改變的散射與構成物質的原子或分子本身的微觀結構有關,通過對散射光譜的研究可了解原子或分子的結構特性。
波長較短的光容易被散射,波長較長的光不容易被散射。
4 瑞利散射
瑞利散射
關於光散射的科學觀察約從19世紀中葉開始,其中J.廷德耳(1869)的工作有重要作用,因此也常把光的散射現象稱為廷德耳效應。這之後,瑞利於1871年假設物質中存在著遠小于波長的微粒而導出了散射現象的規律,可以很好地解釋天空的藍色和落日的紅色。這種散射光的頻率與入射光相同,散射光的光強服從下面式(1)、(2),稱為瑞利散射。
按照經典電磁理論,在光波場的作用下,原子或分子成為以光波頻率振動的電偶極子,從光波取得能量,同時發出輻射。這種輻射就是散射光。偶極輻射的振幅與電子振動的加速度成正比,設電子振動的位移x=xocosωt(ω表示圓頻率),則加速度
光的散射
,故散射光振幅與ω^2成正比,光強與ω^4成正比,即任一方向的散射光強
光的散射
(1)
瑞利於1871年得到的結果與此一致。上式稱為瑞利定律。
如果入射光是非偏振光(自然光),散射分子為各向同性的,則在與入射光方向成θ角(散射角)的方向上,散射光的光強
光的散射
, (2)
光的散射
表示垂直於入射光方向的散射光強。這時各方向的散射光一般地是部分偏振的,但在垂直於入射光的方向上為線偏振光,如圖1所示。圖中非偏振的入射光沿z方向傳播,光波的振動可看作兩個互相垂直的獨立振動,在圖中取作x與y方向。在O處的各向同性分子作與此同方向的兩個獨立的受迫振動。任一方向的散射光是這兩個振動發出的輻射之和。在Oxy平面內的任一方向上,散射光的振動方向都在該平面內與傳播方向垂直,都是線偏振光。其他方向上的散射光則包含著兩個不同方向的獨立振動分量,為部分偏振光。
如果入射光為線偏振光,則各方向散射光也都是線偏振光(但在入射光的振動方向上散射光的光強為零)。
在各向異性分子情形,分子的振動方向可以和入射光振動方向不同。在具有這種分子的氣、液物質中,當線偏振光入射時,由於各分子取向的無規性,其散射光疊加的結果使在各方向上,包括垂直於入射光方向上的散射光,都成為部分偏振的。
上面說明了由分子(原子)產生的瑞利散射。如果光傳播時遇到了物質微粒,則微粒也成為散射中心導致光的散射。當微粒的線度遠小於光的波長時,散射光也服從式(1)、(2),也屬於瑞利散射。
當光在物質中傳播時,實驗表明,在光頻範圍內,接近完全均勻純凈的物質(例如低溫純凈晶體)中,不能觀察到瑞利散射。這是因為構成物質的分子(原子)產生的散射光與入射光是相干的,在接近完全均勻純凈的物質中,大量分子的這種散射光雖能在入射光方向上與入射光疊加而決定該光波在物質中的相速度,從而決定其色散性質(見光的色散);但在入射光傳播方向之外的各方向上,則因相互干涉而幾乎相消,因而實際上觀察不到散射現象。在物質中觀察到的瑞利散射常屬於以下情況。如果物質中存在折射率分佈的不均勻性,例如物質中有雜質微粒(如細微的懸浮物、細微氣泡等)時,這些細微的不均勻性區域成為散射中心,它們的散射光是非相干的,各散射光束的光強直接相加,這時即可觀察到散射光。當微粒線度遠小於光的波長時,就得到瑞利散射。此外,通常的純凈物質中各處總有密度的起伏,這也構成折射率分佈的不均勻性,M.斯莫盧霍夫斯基(1908)與A.愛因斯坦(1910)的研究表明,這種密度起伏是一般純凈透明物質中產生瑞利散射的原因。這種由密度起伏導致的散射也稱為分子散射。
一般地說,瑞利散射是微弱的。
由於瑞利散射光強與1/λ^4成正比,當觀察晴天的天空時,進入人眼的是陽光經過大氣時的側向散射光,主要包含著短波成分,所以天空呈藍色;而落日時直視太陽所看到的是在大氣層(包括微塵層)中經過較長路程的散射后的陽光,剩餘的長波成分較強,所以落日呈紅色。
5 米氏散射
(米氏散射)
如果粒子的線度較大,瑞利定律不再適用。1908年G.米利用宏觀電磁場方程討論了平面波入射於球形粒子時光的傳播,提供了一個可用於大粒子的散射理論。他的結果要用無窮級數表達,一般需要作數值計算。根據他的散射理論,當散射粒子半徑c與入射光波長λ之比c/λ很小時,總散射光能與波長關係和瑞利定律一致;當這一比值較大時,總散射光能隨這一比值的增大出現起伏不大的極大值與極小值,這種起伏變化也是隨c/λ的增大而逐漸減小的。因此對於足夠大的散射粒子可得到幾乎與波長無關的散射。計算也表明,隨著粒子半徑增大,向入射光前方的散射光能增大(這稱為米氏效應),而且在空間不同方向上出現一些極大與極小。
大粒子的散射與波長無關,這可以說明許多膠體懸浮液(粒子線度接近于波長或大于波長)的散射現象。天空中的白雲也可由較大水滴的散射說明。
6 喇曼散射
1923年A.G.S.斯梅卡爾指出,在光的散射過程中,如果分子的狀態也發生改變,則入射光與分子交換能量的結果可導致散射光的頻率發生改變。這種現象首先由C.V.喇曼於1928年在苯、甲苯、水及其他多種液體、一些氣體與蒸氣以及潔凈的冰中發現;同年Γ.С.蘭茨貝格與Л.И.曼傑斯塔姆也獨立地在石英晶體中發現了同種現象。這種現象的典型情況是:當強單色光(圓頻率為ω)入射到物質中時,除有頻率不變的瑞利散射光外,還出現頻率減小的散射光(ω┡=ω-Δω),稱為斯托克斯線,和頻率加大的散射光(ω″=ω+Δω),稱為反斯托克斯線。頻率差
Δω/2π等於分子中原子振動的頻率(一般在紅外波段),這種散射稱為喇曼散射或併合散射,散射光強度遠較瑞利散射為小。
從經典理論角度,可以認為喇曼散射是因分子中原子的振動使電偶極矩周期變化而產生的調製的散射光。量子理論把散射過程解釋為光子與分子作用中,入射光子更換為散射光子的過程。為了說明這種過程中的能量關係,引用了虛能級概念,即認為分子在散射過程中可經歷一種中間能態,稱為虛能態,以完成光子的更換。可用圖2所示的能級躍遷圖來表示喇曼散射過程。圖中用Ei、Ej來表示分子的兩個振動能級,還用虛線畫出虛能級Eα、Eβ。當入射光子啚ω和處於低能級Ei的分子作用時,可以使分子向上躍遷到虛能級Eα,再向下躍遷到高能級Ej,發出散射光子啚ω┡。這樣
光的散射
這就是喇曼散射的斯托克斯線。如果入射光子和處於高能級Ej的分子作用,使之向上躍遷到虛能級Eβ,再向下躍遷到低能級Ei,發出散射光子啚ω″,則
光的散射
這就是喇曼散射的反斯托克斯線。由於一般處於高能級的分子數較少,所以反斯托克斯線總是較斯托克斯線為弱。隨著物質的溫度升高,反斯托克斯線將增強。
物質的喇曼散射光譜與紅外光譜可以互相補充用於研究分子及其與光的相互作用。
喇曼散射
參見喇曼效應。7 布里淵散射
這是因物質中存在以聲速傳播的壓強起伏而引起的光的散射。散射光發生很小的頻率移動(遠較喇曼散射的頻移為小),且頻移與散射角有關。
8 臨界乳光
光散射現象的一種最可觀的情況是臨界乳光。當流體物質接近臨界態時,密度起伏的微區變得大于波長並停留較長的時間,其中處於臨界密度附近的液態密度微區很象一些大的粒子,因而物質中發生顯著的散射現象。流體在稍高的溫度時本是很透明的,這時則突然變得混濁,幾乎能散射全部入射光。
9 應用
光的散射現象在各個科學技術部門中有廣泛應用。通過散射光的測量可以了解到散射粒子的濃度、大小、形狀及取向等,在物理、化學、氣象等許多方面的研究中得到應用。散射光譜又可用於確定物質分子與原子的特性。近年來利用強激光可獲得受激光散射,更便於進行這種研究與應用。
No comments:
Post a Comment