首先楼主所说的同伦应该是微分同胚吧。同伦是函数之间的,微分同胚是微分流形之间的。不过一定要把路径的集盒说成函数也好像没什么关系。
然后,楼主说的阿列夫1貌似其实应该是实数的基数(连续统):C=2^阿列夫0。阿列夫1的定义是是阿列夫0的sup,不一定是C。虽然因为连续统假设的独立性,也不能说一定不是,但是两者的定义有明显区别。在我们可具体构建的物理世界里面是不会出现阿列夫n(n>0)的因为不会用sup来构建基数。只会出现 2^a来构建新的基数(a为旧的基数)。所以我更不知道楼主的阿列夫2是怎么来的...如果是出自什么书的话请详解。
No comments:
Post a Comment