理论基础:
1.先验概率:先验概率(prior probability)是指根据以往经验和分析得到的概率(典型的例子是概率论中应用题的已知条件),如全概率公式,它往往作为"由因求果"问题中的"因"出现。之所以称之为“先验”,是因为他不考虑任何B方面的因素。
2.后验概率:后验概率是指在得到“结果”的信息后重新修正的概率,如贝叶斯公式中的。是“执果寻因”问题中的"果"。先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。后验概率充分利用了先验知识和观测到的历史事件变量的信息。
3.P(A|B):由于得自B的取值而被称作A的后验概率;
P(B|A):由于得自A的取值而被乘坐B的后验概率。
4.贝叶斯公式
5.全概率公式
6.贝叶斯法则
贝贝叶斯分类:
1.目标:求一个对象属于每一个类的概率,找概率最大的一个作为对象所属类别。
2.训练过程(以对文档进行分类为例,要分类的对象就是文档,特征就是文档中的单词或者其他有意义的合理的特征,这里以单词为例):
(1).提取文档特征
(2).类别计算:
(3).计算单词的条件概率
注:2,3两步的计算互不牵扯,可以任意顺序计算。
2.分类过程:
(1).提取文档特征
(2).计算各类中出现该样本的概率:
(3).计算给定赝本属于某分类的条件概率:
(4).选出上边计算中概率最高的一个就行了。
1.先验概率:先验概率(prior probability)是指根据以往经验和分析得到的概率(典型的例子是概率论中应用题的已知条件),如全概率公式,它往往作为"由因求果"问题中的"因"出现。之所以称之为“先验”,是因为他不考虑任何B方面的因素。
2.后验概率:后验概率是指在得到“结果”的信息后重新修正的概率,如贝叶斯公式中的。是“执果寻因”问题中的"果"。先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。后验概率充分利用了先验知识和观测到的历史事件变量的信息。
3.P(A|B):由于得自B的取值而被称作A的后验概率;
P(B|A):由于得自A的取值而被乘坐B的后验概率。
4.贝叶斯公式
5.全概率公式
6.贝叶斯法则
贝贝叶斯分类:
1.目标:求一个对象属于每一个类的概率,找概率最大的一个作为对象所属类别。
2.训练过程(以对文档进行分类为例,要分类的对象就是文档,特征就是文档中的单词或者其他有意义的合理的特征,这里以单词为例):
(1).提取文档特征
(2).类别计算:
(3).计算单词的条件概率
注:2,3两步的计算互不牵扯,可以任意顺序计算。
2.分类过程:
(1).提取文档特征
(2).计算各类中出现该样本的概率:
(3).计算给定赝本属于某分类的条件概率:
(4).选出上边计算中概率最高的一个就行了。
版权声明:本文为博主原创文章,未经博主允许不得转载。
No comments:
Post a Comment