例如分子波函数可以写为电子波函数和原子核波函数乘积是波恩-奥本海默近似的结果,忽略非绝热耦合
振动波函数可以写为各个简谐振动模式乘积,是将势能面近似为2次曲面的结果,忽略非谐性耦合
电子波函数可以写为分子轨道的反对称乘积是HF的假设,忽略电子相关
-
为什么总波函数可以分解为几个波函数相乘
作者: skysky112211 (站内联系TA) 收录: 2012-10-25 发布: 2012-10-23
是数学上严密的推到,还是怎么样的 谢谢
"可以分解"的定义是什么?
只有在一定近似下,总波函数才能写成各个部分的乘积。他们都是忽略了粒子运动中某种耦合的结果
例如分子波函数可以写为电子波函数和原子核波函数乘积是波恩-奥本海默近似的结果,忽略非绝热耦合
振动波函数可以写为各个简谐振动模式乘积,是将势能面近似为2次曲面的结果,忽略非谐性耦合
电子波函数可以写为分子轨道的反对称乘积是HF的假设,忽略电子相关
既然是近似就不是总正确
例如分子波函数可以写为电子波函数和原子核波函数乘积是波恩-奥本海默近似的结果,忽略非绝热耦合
振动波函数可以写为各个简谐振动模式乘积,是将势能面近似为2次曲面的结果,忽略非谐性耦合
电子波函数可以写为分子轨道的反对称乘积是HF的假设,忽略电子相关
既然是近似就不是总正确
2楼: Originally posted by songping92 at 2012-10-23 2135
"可以分解"的定义是什么?
总波函数约等于几个波函数的乘积"可以分解"的定义是什么?
3楼: Originally posted by virtualzx at 2012-10-23 2304
只有在一定近似下,总波函数才能写成各个部分的乘积。他们都是忽略了粒子运动中某种耦合的结果
例如分子波函数可以写为电子波函数和原子核波函数乘积是波恩-奥本海默近似的结果,忽略非绝热耦合
振动波函数可以写 ...
能够再详细一点吗,波恩-奥本海默近似忽略了某几项能量,然后怎么就可以写成波函数想成了?只有在一定近似下,总波函数才能写成各个部分的乘积。他们都是忽略了粒子运动中某种耦合的结果
例如分子波函数可以写为电子波函数和原子核波函数乘积是波恩-奥本海默近似的结果,忽略非绝热耦合
振动波函数可以写 ...
5楼: Originally posted by skysky112211 at 2012-10-23 1829
能够再详细一点吗,波恩-奥本海默近似忽略了某几项能量,然后怎么就可以写成波函数想成了?...
波恩奥本海默近似忽略了非绝热耦合项能够再详细一点吗,波恩-奥本海默近似忽略了某几项能量,然后怎么就可以写成波函数想成了?...
你可以这样来理解:求解薛定锷方程太难了,那么首先先把哈密顿算符换成一个更简单的形式,求解一个更简单的问题,然后考虑这个更简单问题的解和正确解的关系。
求解电子波函数就是在求解一个近似问题的准确波函数。因为是一个本征函数问题,在每一个核坐标,电子波函数构成一组完备基。所以,你可以把体系波函数逐点用电子波函数展开,而在每个点的展开系数就成了一组(无穷多个)原子核坐标的函数。也就是说你是把体系波函数写成了无穷多项之和,每一项是一个电子波函数和一个原子核的函数的乘积。
然后再把这个无穷多项展开式带入体系的薛定谔方程,就可以解出来这些展开系数,得到正确的分子波函数。
你把那个展开往薛定谔方程里代入,然后左侧乘以随便一个电子态1的电子波函数,就得到很多项。其中有很多形如
<电子波函数1|电子波函数2对于核坐标的偏导数>
的项。这些就叫做非绝热耦合项。因为这些项是从原子核动能项衍生出来的,所以前面系数分母都有原子核质量。原子核质量是个大数,所以只要这一项本身的值不太大,乘以前面的质量倒数之后都可以忽略认为为0。这就是波恩奥本海默近似。忽略之后这些项之后,发现体系波函数展开式就只有电子态1相乘的那个展开系数剩下了。而这里得到的这个方程就是原子核的薛定谔方程。
你可以证明相同电子态内的耦合项为0,而不同电子态间的耦合项大小和它们间能量差成反比,所以只要没有两个电子态能量是相近的,波恩奥本海默近似就成立。
以两粒子体系为例,考虑定态问题:
单粒子的波函数可以张开一个Hilbert空间;(两项)乘积波函数张开一个两粒子的Hilbert空间(可以看做两个单粒子空间的直积空间)。如果单粒子波函数是完备的(理论上总是可以的),则其直积空间也是完备的,也就是说精确波函数一定可以用乘积波函数展开。
总而言之,乘积波函数可以构成一组完备基,精确波函数可以用它展开(近似波函数当然也可以了),展开式在理论上可以是完全精确的。
通常所说的乘积波函数(需要满足粒子全同性原理的要求)相当于完备空间的一个截断(只选用一个或一部分基函数来展开),是精确波函数的一个近似。实际上所有的多粒子体系的波函数都(只能)是近似的、做了截断的波函数。
总结:两粒子的问题可以简单推广到多粒子体系;进一步可以推广到时间自由度。
PS;从数学上讲,就是方程存在分离变量形式的解(虽然最终的解是级数形式)。
单粒子的波函数可以张开一个Hilbert空间;(两项)乘积波函数张开一个两粒子的Hilbert空间(可以看做两个单粒子空间的直积空间)。如果单粒子波函数是完备的(理论上总是可以的),则其直积空间也是完备的,也就是说精确波函数一定可以用乘积波函数展开。
总而言之,乘积波函数可以构成一组完备基,精确波函数可以用它展开(近似波函数当然也可以了),展开式在理论上可以是完全精确的。
通常所说的乘积波函数(需要满足粒子全同性原理的要求)相当于完备空间的一个截断(只选用一个或一部分基函数来展开),是精确波函数的一个近似。实际上所有的多粒子体系的波函数都(只能)是近似的、做了截断的波函数。
总结:两粒子的问题可以简单推广到多粒子体系;进一步可以推广到时间自由度。
PS;从数学上讲,就是方程存在分离变量形式的解(虽然最终的解是级数形式)。
4楼: Originally posted by skysky112211 at 2012-10-24 0753
总波函数约等于几个波函数的乘积...
就是说这个近似对研究的目的是可以接受的。为什么是可以接受的,取决于研究目的的精度。。。总波函数约等于几个波函数的乘积...
8楼: Originally posted by songping92 at 2012-10-24 1456
就是说这个近似对研究的目的是可以接受的。为什么是可以接受的,取决于研究目的的精度。。。...
一般说来这种近似(总波函数"约等于"几个波函数的乘积)所带来的误差很难从数学上严格确定(也许是我孤落寡闻?) 有的时候可以有一些数量级的估计,比如曾谨言的量子力学上有一个对分子中电子能量和转动、振动的数量级上的估计。很多时候这种近似的是否可以接受通过比较计算结果和实验结果得知的。就是说这个近似对研究的目的是可以接受的。为什么是可以接受的,取决于研究目的的精度。。。...
-
以下相关主题对您可能也用帮助:
- 如何绘制费米面附近某条能带的波函数
- 波函数----并非统计工具而是物理真实 【转】
- 急~关于波函数对称性的问题求助
- 为什么所有的参考书上都只是求解了氢原子的波函数
- 【平面波程序原理与应用的交流活动专题二】从平面波函数到电荷密度计算
- 波函数相位的重要性
- 量子力学中波函数为什么要写成复数形式
- 怎么得到旋轨耦合中不同J值的本征值和波函数?
- VASP计算:如何处理波函数占用空间太大的问题
- 【求助】轨道波函数的绘制
- 【求助】单粒子(费米子)波函数
- 【求助】为什么波函数的求解要考虑对称性?
- 【求助】有关波函数复数表达式的物理意义?
- 【求助】波函数有什么物理意义?
- 【求助】三维无限势阱波函数表达式
- 【求助】试探波函数不自洽怎么办?
- 【求助】不能归一的波函数
- 【交流】如果波函数不归一化,不完备,会怎样
- 【求助】波函数为什么可以确定微观粒子状态?
小木虫搜索Adsense
About 229 results (0.18 seconds)
|
Web
(10)
|
emuch.net
emuch.net/html/201210/5095207.html
2012年10月25日 ... 只有在一定近似下,总波函数才能写成各个部分的乘积。他们都是忽略了粒子运动中 某种耦合的结果例如分子波函数可以写为电子波函数和原子核波 ...
emuch.net
emuch.net/html/201210/5095207.html
|
emuch.net
emuch.net/html/201001/1802371.html
2010年1月17日 ... 1,写出三维无限深势阱中粒子的第一、第二能级和波函数。 ... 将一维的波函数相乘, 能级相加,就得出三维的了,第一能级n都等于1,无简并,第二能 ...
emuch.net
emuch.net/html/201001/1802371.html
|
emuch.net
emuch.net/html/201109/3606927.html
布洛赫波由一个平面波和一个周期函数 (布洛赫波包)相乘得到。其中u{r})与势场 具有相同周期性。布洛赫波的具体形式为: 式中k 为波矢。上式表达的波函数称为布 洛 ...
emuch.net
emuch.net/html/201109/3606927.html
|
emuch.net
emuch.net/html/201210/5016849.html
2012年10月2日 ... 笔者提出一个十分简单的办法,可以让重叠区域、程度、相位匹配方式直接显示出来, 也就是:令相应两个轨道波函数值相乘,然后显示等值面。
emuch.net
emuch.net/html/201210/5016849.html
|
emuch.net
emuch.net/html/201004/1909965.html
2010年4月6日 ... 波函数图像是不是不可以理解为事电子的运动轨迹。它是不是只是一种数学工具, 没有明确的物理意义啊? 请明白人指点,谢谢。
emuch.net
emuch.net/html/201004/1909965.html
|
emuch.net
emuch.net/html/201111/3760804.html
2011年11月6日 ... 于是真正算起电荷来,即在Full Mulliken population analysis中,是overlap matrix的 矩阵元与DENSITY MATRIX的矩阵元相乘,这两个因波函数取负 ...
emuch.net
emuch.net/html/201111/3760804.html
|
emuch.net
emuch.net/html/201111/3819616.html
2011年11月21日 ... 这是我上线代可无聊时想到的问题,最初是想用来好好理解波函数的相位的: ... 将 粒子交换算符作用于粒子的波函数上,然后与粒子的波函数相加并归一化 ... 上等于 交换算符作用于单粒子的波函数乘以n-1个粒子体系的波函数呀。
emuch.net
emuch.net/html/201111/3819616.html
|
emuch.net
emuch.net/html/201110/3719284.html
2011年10月26日... 还请各位大虾指教。 此外x算符应该如何作用在函数上,直接相乘吗? ... 波函数= 描述波的函数, 不同的波就有不同的函数啊. quantumor (站内 ...
emuch.net
emuch.net/html/201110/3719284.html
|
emuch.net
emuch.net/html/201111/3779680.html
2011年11月10日 ... 好想法,最近我也在想办法读取WAVECAR,但是发现里面的东西还不能直接用作波函数。看起来很费劲,现在看那些子函数都是什么干什么的,看了 ...
emuch.net
emuch.net/html/201111/3779680.html
|
emuch.net
emuch.net/html/201001/1796588.html
2010年1月14日 ... 它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的 乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求, ...
emuch.net
emuch.net/html/201001/1796588.html
|
1
2
3
4
5
6
7
8
9
10
欢迎监督和反馈:
本帖内容由 skysky112211 提供,小木虫为个人免费站点,仅提供交流平台,不对该内容负责。
欢迎协助我们监督管理,共同维护互联网健康,如果您对该内容有异议,请立即发邮件到 emuch@126.com 联系通知管理员,也可以通过QQ周知,我们的QQ号为:8835100
我们保证在1个工作日内给予处理和答复,谢谢您的监督。
本帖内容由 skysky112211 提供,小木虫为个人免费站点,仅提供交流平台,不对该内容负责。
欢迎协助我们监督管理,共同维护互联网健康,如果您对该内容有异议,请立即发邮件到 emuch@126.com 联系通知管理员,也可以通过QQ周知,我们的QQ号为:8835100
我们保证在1个工作日内给予处理和答复,谢谢您的监督。
小木虫,学术科研第一站,为中国学术科研研究提供免费动力 欢迎监督,发现不妥请立即联系管理员 E-mail:emuch@126.com QQ:8835100 京ICP备05001187号 河北廊坊公备131000022172号 |
No comments:
Post a Comment