Monday, February 29, 2016

A tensor may consist of a single number, in which case it is referred to as a tensor of order zero, or simply a scalar

phymath999

phymath999.blogspot.com/
Translate this page
16 hours ago - May 3, 2010 - 0阶张量(标量):无自由指标的量? 1阶张量(矢量):有1个自由指标的 ... phymath999: 陈省身活动标架及外微分用外微分d一下; 切向量.
You've visited this page 4 times. Last visit: 1/31/16
submitted  by Drivabletree

phymath999

phymath999.blogspot.com/
Translate this page
16 hours ago - May 3, 2010 - 0阶张量(标量):无自由指标的量? 1阶张量(矢量):有1个自由指标的 ... phymath999: 陈省身活动标架及外微分用外微分d一下; 切向量.
You've visited this page 4 times. Last visit: 1/31/16
all 2 comments

[–]Drivabletree[S] 2 points  
Hi,
Can someone help me out an explain how you expand the f(x) for this series, i cant work out why the 3rd term is arranged like it is? Could anyone write the 4th term and explain how you got it?
Thanks

[–]flunzi 2 points  
(Warning, this post is long and may seem complicated, just read the last part if it's too much :-).

The 4th term is hard to write in this vector notation.
2 ways to look at it:
(Option 1 - geometric intuition)
The n-th derivative of f at a is, by definition of derivatives in higher dimensions (Frechet-derivative), a map/function that takes n vectors as arguments.
For example:
f(a) is the 0-th derivative of f at a, and is a constant vector (it has no argument - if this confuses you, read on).
Thus, the 1st term is written as f(a).

f'(a) is the 1st derivative of f at a, is represented by a row vector (n components - see slide) and takes one vector argument of the form (x-a). Evaluating the 1st derivative is done by multiplying the row vector (gradient of f evaluated at a) with the argument column vector.
You could write the 2nd term as 1/1! f'(a)[x-a] - the [] brackets meaning "(x-a) is an argument of the map f'(a)".

f''(a) is the 2nd derivative of f at a, is represented by the "2-dimensional" n x n matrix H_f(a) (Hessian matrix of f at a) and takes 2 vectors of the form (x-a) as arguments. Evaluating the 2nd derivative is done by multiplying the Hessian "from both sides" with both argument vectors -row vector (1xn) times matrix (nxn) times column vector (nx1).
You could write the 3rd term as 1/2! f''(a)[x-a,x-a] or as 1/2! H(x=a) [x-a,x-a] - meaning that the map f''(a)=H(x=a) has 2 vector arguments of the form (x-a) and (x-a).

f'''(a) would be the third derivative, and takes 3 vectors (x-a) as arguments. If you represented f'''(a) by something, it would be a n by n by n "cube matrix" ("3 dimensions"), which is multiplied with (x-a) "from all 3 sides" to evaluate it.
So the 4th term would look something like 1/3! f'''(a)[x-a,x-a,x-a].

As you can see, writing down representations of higher derivatives needs more dimensions than your sheet of paper has, which is stupid (and why your formula stops being explicitly written down at the second derivative step).

But you can imagine the 3rd derivative as a 3-dimensional "cubic matrix" with n*n*n entries that has 3 indices, just like df/dx has one index d/dx_i f (one index for each partial derivative) and n entries , and the Hessian has 2 indices d/dx_i d/dx_j f (2 indices for any combination of 2 partial derivatives) and n2 entries.
The 4th derivative would be represented as a 4-dimensional cube matrix thingie with n4 entries of the form
d/dx_i d/dx_j d/dx_k d/dx_l f (where i,j,k,l are any indices from 1 to n).
Writing this down explicitly is either pretty much abstract -
f''''(a)[x-a,x-a,x-a,x-a]
or can't be done unless you have a 4-dimensional piece of paper :-)

f is a function that takes a vector and has a scalar ("zero dimensional" on your piece of paper - no width or height) result. You can represent the n-th derivative of f at a as an n-dimensional object, and every time you multipy it "from one side" with one vector (x-a), you reduce the dimension by one, until you end up being "zero-dimensional" (a real number).
Which makes sense, because in the end the part f(x) left of the "=" is a real number (a scalar), so everything that is added on the right side must be scalars too (otherwise the formula makes no sense).

(Option 2 - these are just sums, don't get confused)
Keep in mind that matrix vector notation is just a clever way to write sums.
For example, multiplying a row vector u with a column vector v is just short for writing the sum
sum_i u_i v_i
where u_i, v_i are the i-th components of the vectors u and v, and you just multiply them and then add up over all i from 1 to n.

In the same way, f'(a) * (x-a) is just the sum (see picture - i'm using different notations, the first being the one from your slide, the last being the sum)
 
 
What is a tensor?
Asked by: Kelly Garmond

Answer

Tensors, defined mathematically, are simply arrays of numbers, or functions, that transform according to certain rules under a change of coordinates. In physics, tensors characterize the properties of a physical system, as is best illustrated by giving some examples (below).

A tensor may be defined at a single point or collection of isolated points of space (or space-time), or it may be defined over a continuum of points. In the latter case, the elements of the tensor are functions of position and the tensor forms what is called a tensor field. This just means that the tensor is defined at every point within a region of space (or space-time), rather than just at a point, or collection of isolated points.

A tensor may consist of a single number, in which case it is referred to as a tensor of order zero, or simply a scalar. For reasons which will become apparent, a scalar may be thought of as an array of dimension zero (same as the order of the tensor).

An example of a scalar would be the mass of a particle or object. An example of a scalar field would be the density of a fluid as a function of position. A second example of a scalar field would be the value of the gravitational potential energy as a function of position. Note that both of these are single numbers (functions) that vary continuously from point-to-point, thereby defining a scalar field.

The next most complicated tensor is the tensor of order one, otherwise known as a vector. Just as tensors of any order, it may be defined at a point, or points, or it may vary continuously from point-to-point, thereby defining a vector field. In ordinary three dimensional space, a vector has three components (contains three numbers, or three functions of position). In four dimensional space-time, a vector has four components. And, generally, in an n-dimensional space, a vector (tensor of order one) has n components. A vector may be thought of as an array of dimension one. This is because the components of a vector can be visualized as being written in a column or along a line, which is one dimensional.

An example of a vector field is provided by the description of an electric field in space. The electric field at any point requires more than one number to characterize because it has both a magnitude (strength) and it acts along a definite direction, something not shared with a scalar, such as mass. Generally, both the magnitude and the direction of the field vary from point-to-point.

As might be suspected, tensors can be defined to all orders. Next above a vector are tensors of order 2, which are often referred to as matrices. As might also be guessed, the components of a second order tensor can be written as a two dimensional array.. Just as vectors represent physical properties more complex than scalars, so too matrices represent physical properties yet more complex than can be handled by vectors.

An example of a second order tensor is the so-called inertia matrix (or tensor) of an object. For three dimensional objects, it is a 3 x 3 = 9 element array that characterizes the behavior of a rotating body. As is well known to anyone who has played with a toy gyroscope, the response of a gyroscope to a force along a particular direction (described by a vector), is generally re-orientation along some other direction different from that of the applied force or torque. Thus, rotation must be characterized by a mathematical entity more complex than either a scalar or a vector; namely, a tensor of order two.

There are yet more complex phenomena that require tensors of even higher order. For example, in Einstein's General Theory of Relativity, the curvature of space-time, which gives rise to gravity, is described by the so-called Riemann curvature tensor, which is a tensor of order four. Since it is defined in space-time, which is four dimensional, the Riemann curvature tensor can be represented as a four dimensional array (because the order of the tensor is four), with four components (because space-time is four dimensional) along each edge. That is, in this case, the Riemann curvature tensor has 4 x 4 x 4 x 4 = 256 components! [Fortunately, it turns out that only 20 of these components are mathematically independent of each other, vastly simplifying the solution of Einstein's equations].

Finally, to return to the comment that tensors transform according to certain rules under a change of coordinates, it should be remarked that other mathematical entities occur in physics that, like tensors, generally consist of multi-dimensional arrays of numbers, or functions, but that are NOT tensors. Most noteworthy are objects called spinors. Spinors differ from tensors in how the values of their elements change under coordinate transformations. For example, the values of the components of all tensors, regardless of order, return to their original values under a 360-degree rotation of the coordinate system in which the components are described. By contrast, the components of spinors change sign under a 360-degree rotation, and do not return to their original values until the describing coordinate system has been rotated through two full rotations = 720-degrees!
Answered by: Warren Davis, Ph.D., President, Davis Associates, Inc., Newton, MA USA
where (x-a)_i is the i-th component of the vector (x-a).

In the same way, (x-a)' * H * (x-a) (row vector * Hessian matrix * column vector) is just a double sum
If this confuses you, this is just how vector times matrix times vector multiplication is defined - ends up being sums.

So the third derivative of f at a, evaluated at the 3 arguments (x-a), (x-a) and (x-a) would just be a triple sum. This would be the 4th term you asked for. Here's a picture:

You can simplify the sum notation if you use multiindices - see here
but if this isn't part of your lecture, don't waste too much thought on that.

The most important thing to know:
  • the Taylor formula on your slide is just a notation for sums (single sum for gradient * vector, double sum for row vector * matrix * vector).
  • this does not look like a math lecture, so you will probably never see higher derivatives than gradient (vector) and Hessian (matrix), so don't worry about that. Just know how to apply the formula as it is written on the slide to concrete examples (so compute the gradient and the hessian), and you should be good. (Maybe you don't even have to do that).

For completeness, this is how the Taylor formula from your slide is written explicitly as sums, and this is just what it means, nothing more.
and the next (4th) term would be

Sunday, February 28, 2016

两矢量点积标量: 没有自由指标,bivectors have more degrees of freedom and are not equivalent to vectors.

相对论理论的四维形式

metc.gdut.edu.cn/ddlx/zyk/dzwd/xyxdldzwd/4.doc

Translate this page
... 的方法是将该方程化为四维形式,而物理量转化为四维协变量,如果能够实现这种转化,则方程一定是协变的。 标量 无自由指标(注光自由指标的量不一定都是标量).

第2讲矩阵分析及弹性力学基础_图文_百度文库

wenku.baidu.com/.../1f2d542fb4daa58da0114a0b.ht...

Translate this page
May 3, 2010 - 0阶张量(标量):无自由指标的量? 1阶张量(矢量):有1个自由指标的量,如ui ? 2阶张量:有2个自由指标的量,如σij , εij ? n阶张量:有n个自由指标的量 ...

[PDF]4

wldz.ldxy.edu.cn/ddlx/ja6-4.pdf

Translate this page
例如:应力张量,电器极短张量等。 4、使用自由指标判断。 标量:无自由指标,又称为零阶张量。 矢量:一个自由指标,又称为一阶张量。 张量:两个自由指标,又称为二 ...

【精品】狭义相对论- 道客巴巴

www.doc88.com/p-3197130429017.html - Translate this page
Dec 24, 2013 - T•二阶张量: 空间转动变换下按▽算符等。 wvvwwv v=⋅ a v a w无自由指标为标量无自由指标为标量例一: 两矢量点积标量: 没有自由指标, 又称 ...

Cross product - Wikipedia, the free encyclopedia


https://en.wikipedia.org/wiki/Cross_product
Wikipedia
This article is about the cross product of two vectors in three-dimensional ... matrixmultiplication; 5.2 Index notation for tensors; 5.3 Mnemonic; 5.4 Cross visualization .... meaning that the three scalar components of the resulting vector s = s1i + s2j ..... bivectors have more degrees of freedom and are not equivalent to vectors.

Saturday, February 27, 2016

其中F 是這個圓周叢的一個聯絡的曲率,這曲率是一個二次微分式, 如果我们把f“遮”起来不看,则左边的d 表示一个全微分记号,

科学网—数学界的玻尔——陈省身- 刘全慧的博文

blog.sciencenet.cn/blog-3377-452745.html 轉為繁體網頁
2011年6月8日 - 读《陈省身文选》(科学出版社,1991) (以下简称《文选》),《数学与数学人第一 ... 我也曾学步,用外微分d一下,外微分很容易,但做完之后就惆怅了。”.

phymath999: 陈省身活动标架及外微分用外微分d一下; 切向量 ...

phymath999.blogspot.com/2015/01/d.html - 轉為繁體網頁
2015年1月18日 - 陈先生的拿手好戏是用活动标架及外微分,我也曾学步,用外微分d一下,外微分很容易,但做完之后就惆怅了。 .... 陈很少生气发火,以至于他发一次 ...

phymath999: diffgeom01 chern01 用外微分d一下把这些方程 ...

phymath999.blogspot.com/.../diffgeom01-chern01-d.html 轉為繁體網頁
2013年8月18日 - 拿手好戏是用活动标架及外微分,我也曾学步,用外微分d一下,外微分 . ... 2012年12月25日- 从欧几里得到微分几何什么是几何学陈省身 整理: ...

追忆陈省身先生:折服于数学之美_科学探索_科技时代_新浪网

tech.sina.com.cn › ... › 百年数学难题庞加莱猜想破解专题 轉為繁體網頁
2004年12月20日 - 追忆陈省身先生:折服于数学之美. ... 有一次他忍不住说:现在做数学什么东西不懂,就“Quantum”(量子化)一下。大家都笑了。我倒觉得他的话切中了 ...

陈省身演讲:中国的数学--科技--人民网

www.people.com.cn › 科技 轉為繁體網頁
2004年12月6日 - 单群的权威数学家D. Gorenstein 相信有限单群都在这里了, 这当然是数学 ... 段学复先生是我的老朋友, 是有限群论的专家, 也许我们可以问一下他 ...

第八章微分几何之父(6) - 《微分几何大师——陈省身传》书摘 ...

read.dangdang.com/content_617866?ref=read-2-D... 轉為繁體網頁
理论物理中的微分几何方法第21届国际会议在南开数学所举办的时候,陈省身是 ... 陈先生有一种可能在世界上都很少见的功力,他能一下子就把学生送到数学研究的 ...

陈省身讲义里的符号..$a\rightarrow x$$$\frac{d A(x ... - 作业帮

www.zybang.com/.../bf9edc02f12ec412a4c2c8cca29eb80... - 轉為繁體網頁
陈省身讲义里的符号..$a\rightarrow x$$$\frac{d A(x)}{dx}=f(x). ... 不是数学符号(刚把这几个符号在网上搜了一下,看到有一篇“LaTex基本语法- stone - 新浪BLOG ”。

[转帖]思念陈省身先生- 北美MBA申请区 - ChaseDream论坛

forum.chasedream.com/thread-82823-1-1.html 轉為繁體網頁
2004年12月7日 - [转帖]思念陈省身先生,ChaseDream. ... D学生吧. 记得Webster谈起陈的时候, 还有些抱怨: "见陈很难, 因为他的办公室外排长队". ... Mark一下

谈谈对于微分符号df 的理解- 饮水思源

bbs.sjtu.edu.cn/bbstcon,board,math,reid,1054088553.html 轉為繁體網頁
记得别人回忆陈省身先生的文章里也提到,五十年代时,研究生们看到他在黑板上 .... 接着原式, 如果我们把f“遮”起来不看,则左边的d 表示一个全微分记号,而右边表示的 ... 反思一下切元素跟余切元素的对偶关系,其实从前头“两类映射的方向相反” 就 ...

chen01 其中F 是這個圓周叢的一個聯絡的曲率,這曲率是一個二次微分式, d是代表此微分式的外微分,dF =0就是说这个二次微分式是封閉的

diffgeom01 chern01 用外微分d一下 把这些方程用外微分微分一下子
  1. http://www.docin.com/p-289876397.html

  2. 数学界的玻尔——陈省身精选 - 科学网—博客

  1. blog.sciencenet.cn/home.php?mod=space&uid...

  2. 2011年6月8日 - 读《陈省身文选》(科学出版社,1991) (以下简称《文选》),《数学与数学人第 .... 拿手好戏是用活动标架及外微分,我也曾学步,用外微分d一下外微分 ...
    1. [PDF]
    2. 第一讲微分与积分 - 世界大学城

    1. www.worlduc.com/.../161%5C4884329%5C陈省身先生在...

    2. 2001年10月11日 - 数f ,把这个d外微分用两次,就等于0,即2. 0. d f = 就行了。 ...... 至少是实数,有的时候你用一下复数的话,有很巧妙的性质!同样的,我知道sin x ...
    1. 曲面论(一)--陈省身先生《微积分及其应用》之第四讲 - docin.com豆丁网

    1. www.docin.com › 高等教育研究生课件

    2. 2011年11月18日 - 你把它取消的话,我现在不再是普通的微分了,是新的微分了,我用D表示这个新的微分,于是就 .... 实际上,我们就把这些方程用外微分微分一下子.
    1. 《数学传播》- 从欧几里得到微分几何– 陈省身- 第九阅览室- 提供科学养分

    1. 9yls.net/9211.html

    2. 2012年12月25日 - 从欧几里得到微分几何什么是几何学陈省身 整理:林丽明几何原本在 ... 一个二次微分式,d是代表此微分式的外微分,dF =0就是说这个二次微分式是 ...

      1. 從歐幾里得到微分幾何什麼是幾何學

      1. 210.60.224.4/ct/content/1987/00060210/0007.htm

      標題:從歐幾里得到微分幾何──什麼是幾何學. #作者:陳省身主講 林麗明整理 .幾何原本 .球面幾何與非歐幾何 .坐標幾何 .群的觀念 .黎曼及克萊恩的幾何學 .
    1. 陈省身 - 教学资源网- 惠州学院

    1. course.hzu.edu.cn/jsds/n28c44.shtml

    2. 2009年5月25日 - 欧氏微分几何. 极小子流形. 全纯映射. 网. 外微分系统和偏微分方程. 高斯-邦尼公式. 示性类. 因为篇幅限制,不能够对陈省身的所有论文和成就—一 ...
    1. 陈省身教授的演讲 - 数学信息系统

    1. 202.38.126.65/nankaisource/chern/chern201.htm

    2. 陈省身演讲:中国的数学美籍华裔数学家、中国南开大学数学研究所所长陈省身 ... 单群的权威数学家D.Gorenstein相信有限单群都在这里了,这当然是数学上一个很好 ...

      1. 學術研究- 國立臺灣大學數學系

      1. www.math.ntu.edu.tw/research/viewtopic.php?CID=5&Topic_ID...

      有一次,陳省身在一個非常正式的演講裡頭,我不知道講題是不是他自己選的,還是被指定的,不過我想大概沒有人敢給陳省身指定題目,題目就是微分幾何與廣義 ...
      1. 陳省身的幾何人生 - 中國國際廣播電臺

      1. big5.cri.cn/gate/big5/gb.cri.cn/1321/2005/04/.../1427@509108_1.htm

      2005年4月8日 - 上個80年代初,陳省身教授就希望21世紀中國成為數學大國。1991年他在 ... 他積極倡導、協助實施了中國數學界三項大的活動,即:召開“國際微分 ...
    1. [PDF]
    2. 陈省身・ 几何原本・ 欧拉示性数 - 中国科技论文在线

    1. www.paper.edu.cn/journal/.../1004-8332(2011)06-0001-1...

    2. 关键词:欧拉;徐光启;利玛窦;陈省身;欧拉示性数;阿蒂亚‐辛格指标定理;数学的 ..... 我着迷,我知道它的最概念化的证明是完成表示联络形式的外微分的结构方程.
    3. 淋巴瘤的病因診斷與治療: - 第 296 頁 - Google 圖書結果

      https://books.google.com.hk/books?isbn=9570808756 - 轉為繁體網頁
      蘇益仁 - 1993 - ‎Lymphomas
      ... 的曲率,這曲率是一個二次微分式, d 是代表此微分式的外微分, dF = 0 就是說這個二次微分式是封閉的。另外一個方程式是 ó , ó =*d*即所謂餘微分( Codifferential )。

      从欧几里得到微分几何- 风雨骑士- 博客频道- CSDN.NET

      blog.csdn.net/rideronstorm/article/details/653939 轉為繁體網頁
      2006年4月7日 - 其中F 是这个圆周丛的一个联络的曲率,这曲率是一个二次微分式,d 是代表此微分式的外微分,dF=0 就是说这个二次微分式是封闭的。 另外一个 ...

      從歐幾里得到微分幾何(第7 頁)

      episte.math.ntu.edu.tw/articles/sm/sm_18_06_1/page7.html
      2002年2月17日 - 其中F 是這個圓周叢的一個聯絡的曲率,這曲率是一個二次微分式,d 是代表此微分式的外微分,dF=0 就是說這個二次微分式是封閉的。 另外一個 ...

      从欧几里得到微分几何.doc - 文档天空- OFFICE办公文档下载 ...

      www.documentsky.com/1192951263/
      其中F 是這個圓周叢的一個聯絡的曲率,這曲率是一個二次微分式,d 是代表此微分式的外微分,dF=0 就是說這個二次微分式是封閉的。 另外一個方程式是δ , ,即 ...

      从欧几里得到微分几何.doc - 文档天空- OFFICE办公文档下载 ...

      www.documentsky.com/750551759/
      其中F 是這個圓周叢的一個聯絡的曲率,這曲率是一個二次微分式,d 是代表此微分式的外微分,dF=0 就是說這個二次微分式是封閉的。 另外一個方程式是δ, ...

      从欧几里得到微分几何——陈省身_百度文库

      wenku.baidu.com/view/795a6823af45b307e8719731.html 轉為繁體網頁
      2011年4月2日 - ... 的形式: 其中F 是这个圆周丛的一个联络的曲率,这曲率是一个二次微分式,d 代表此微分式的外微分,dF=0 就是说这个二次微分式是封闭的。

      phymath999: qmmath01 diffgeorm01 線代啟示錄特徵向量 ...

      phymath999.blogspot.co.uk/2013/08/diffgeorm01.html
      2013年8月18日 - ... d是代表此微分式的外微分,dF =0就是说这个二次微分式是封闭的。 diffgeom01 chern01 用外微分d一下把这些方程用外微分微分一下子 · gr01 ...

      phymath999: "對數函數熵" 冗餘度愈大,語言的識別力愈大 ...

      phymath999.blogspot.co.uk/2013/08/55-80.html
      2013年8月14日 - ... d是代表此微分式的外微分,dF =0就是说这个二次微分式是封闭的。 diffgeom01 chern01 用外微分d一下把这些方程用外微分微分一下子 · gr01 ...

      phymath999: qm01 phymath01 算子01 矩陣01 有時候用矩陣 ...

      phymath999.blogspot.hk/2013/08/01-mathcaltmathcalt.html
      2013年8月15日 - ... d是代表此微分式的外微分,dF =0就是说这个二次微分式是封闭的。 diffgeom01 chern01 用外微分d一下把这些方程用外微分微分一下子 · gr01 ...

      什麼是分式方程式 - 公司+

      www.coplus.tw/in/什麼是分式方程式
      ... 學(第7 頁) 陳省身整理:林麗明... 這個圓周叢的一個聯絡的曲率,這曲率是一個二次微分式,d 是代表此微分式的外微分,dF=0 就是說這個二次微分式是封閉的。