熵力
目录
熵力
定义:熵力就是一个自由能的概念,而自由能的本质就是熵和能量竞争。熵力就是自由能F的导数!
熵和有序性的关系,抬出熵公式ΔS=kB㏑Ω。Ω
为总能量为E的N个分子的可能状态数。
以一个绝热箱为例子,N个粒子在左侧,右侧为真空突然打开中间隔板,熵如何变化?
当去除一个约束,熵会自发增加,系统达到平衡,气体分子在不受控制的膨胀中,丧失了有序性系统永远不会自发的还原。如果要使系统复原我们必须对系统做功,压缩气体使系统升温,为了回到原来状态还必须冷却。于是我们得到结论:为了增加有序性付出的代价,是必须使一些有序能量降级为热能。
来说明另一结论“将热能升级为机械能的代价是必须损失有序性”(在这里省去其证明过程,参见原论坛的帖子[1])
熵的单向增加,意味着物理过程的不可逆(麦克斯韦曾想过一个小妖,但那个小妖其实也需要外部能量,即热源)
自由能的本质就是熵和能量的竞争,只要系统自由能没有达到最小 系统就可以做机械功。
第二定律可以被改为:小系统a与大系统B进行热和机械接触,整个系统B会保持在温度T与压强p的平衡态,而a将达到新的平衡态使得下列值最小:G(a)=E(a)+pV(a)-TS
(子系统与大系统交换体积的情况下)G为吉布斯自由能。“E(a)+pV(a)”为焓 用H
表示不考虑化学反应和反应物相的转移,纯物理思考,我们可以忽略吉布斯自由能G与亥姆霍兹自由能F 的区别都称自由能。
公式中的f是系统a在L的方向上施加给外部世界的力,子系统倾向于降低其自由能。
功来自于何处?T没有变化、分子内能就没有改变。气体吸取能量转化为机械功。这违反第二定律么?
不!气体膨胀时牺牲了有序性!膨胀后我们对气体位置了解程度不再像以前那样精确,但是某种有序度被消耗了。而自由能的概念就是这个直觉的精确化!换而言之热能升级为机械能的代价必须损失有序性。
疏水作用力得以产生的一个很重要的原因是
水的特殊性质——液态水的氢键网络。另一个角度来说分子是否可溶,看他是否会被氢键网络所包裹的笼状结构,这就叫非极性小分子的溶剂化。
能量最小化不是纳米世界的唯一法则,一个水分子和4个水分子氢键链接,当自身四个氢键结合位点中的任意一个面向非极性物体时,水分子无法同时维持原有的氢键数,因此围绕非极性物理的水分子必须做出选择,要么牺牲氢键而静电能增加,要么保留他们而熵相应的丧失。对于任何一种情况自由能F=E-TS
都会上升。这个自由能的成本是非极性分子在室温水弱可溶性的起源,通常称为疏水效应。
疏水溶剂化的自由能代价中有一项大的熵成份。H键的短程性暗示着H键网络只会围绕非极性分子的第一层水分子有扰动产生一个界面的自由能代价正比于它的表面积。有机分子烃链的溶解度随链长的增加而下。
排空效应:当大颗粒被半径为R
的小颗粒包围时,小颗粒能把大颗粒推到一起,以使小颗粒自身的熵最大。如果两个表面精确匹配,则相应的单位接触面积上的自由能减少为:ΔF/A=ckBT×2R,ckBT
是平衡渗透压的范特霍夫关系,c=N/V 是溶质分子数密度,kB 为玻尔兹曼常数,T 为温度。
疏水效应能够利用熵使有序性增加(自组装)实现这一过程是以一类更小更多的物体产生无序度增加为代价。疏水作用一般只包括水分子的第一层。疏水相互作用指非极性基团受到水分子的排斥相互聚集在一起的作用力,又称为疏水键。疏水键是驱动蛋白质组装和和稳定的主导作用,属于短程弱相互作用。一个孤立系统出现平衡态是熵和能量两方面达到最佳折衷的产物。考兹曼(W.Kauzmann)1959
年指出为了减少暴露在水中的非极性表面积,任何两个在水中的非极性表面积将倾向于结合在一起。疏水溶剂化的代价大部分源于熵,疏水效应显著的熵特性,这暗示着随温度增高疏水效应的增强(前提是温度不得破坏水中氢键的情况下,氢键破坏越多疏水表面对氢键形成干扰越小,疏水效应减弱)。与排空效应是类似的疏水效应能够利用熵呈现出分子的自组装。
酶与底物的结合主要也是疏水作用力,它的本质是自由能、是熵力……
牛顿的引力理论统治着宏观尺度,微观尺度上它非常微弱。事实上,我们也只能在毫米级别以上去测试引力理论。引力理论通常认为难以与量子力学理论整合起来,寻求将引力和其它自然力统一起来也许根本走错了方向。
荷兰的理论物理学家和弦论理论家Erik
Verlinde提出了一种源自牛顿经典力学的新理论(【2】)。解释引力的起源。他认为,引力的存在是因为两个质量及其周围环境之间虚空的信息密集度差异引起的。引力不是自然界中一种基本力,而是从微观现实深处中产生的突发现象,引力本质上是来源于熵力。他的新牛顿理论的相对论延申可直接导出爱因斯坦方程式。
简单的说,引力是突显的结果!而不是基本的。
也就是说,引力是熵力;加速度与熵的梯度有关,所以惯性是无熵梯度的表现,质量与bits数成正比;牛顿势是熵与bits数的比例。
当然要说明这些就必须要阐述全息原理,黑洞熵等等。《黑洞与时间弯曲--爱因斯坦的幽灵》以及霍金的《果壳中的宇宙》两本科普书可以帮我们理解这些概念,管中窥豹。即便非物理专业我们也能很好理解这些概念。
引力来源于熵力的推论
描述一个空间最初的系统不是这个空间以及存在于这个空间中的物体,而是包围这个空间的曲面。在这个曲面上,有一个微观系统,局部处于平衡态,所以曲面的每个局部都有一些自由度以及被这些自由度携带的熵。当一个试验粒子在外部接近这个曲面时,曲面上的自由度受到这个试验粒子的影响从而熵起了变化。当这个粒子完全融入曲面时,我们认为这个粒子本身也可以由曲面上的自由度描述了。这也就是《果壳中的宇宙》中所说的黑洞熵正比于黑洞世界的表面积。
学过一些热力学或统计物理的人知道,当一个系统的能量增大时,熵通常也增大,所以粒子融入曲面后曲面上的熵增大了。通过能量守恒我们得知,熵增对应的熵力是吸引力,即粒子总被曲面包围的空间部分吸引。我们看到,热力学的后果就是万有引力!Verlinde向我们展示,牛顿的万有引力公式以及爱因斯坦理论都可以通过统计物理加全息原理推导出来。
No comments:
Post a Comment