Wednesday, August 15, 2012

首先,分立能级一定是束缚态,散射态一定是连续谱。连续能谱中有可能存在偶然的束缚态,但一定是对应一个特定的本征值(能量),而在这个值的邻域所对应的都是散射态,因此并不具备物理意义((1)在连续谱中实验恰好取到这个能量的概率是0。(2)即使瞬时可以做到,由于系统和环境之间的相互作用,肯定会破坏这个束缚态),我们不应该认为这是个“真实”的束缚态,因此说束缚态一定有离散能级不应算错。详情可参阅朗道的《量子力学(非相对论理论》§10定态和§18 薛定谔方程的基本性质。

首先,分立能级一定是束缚态,散射态一定是连续谱。连续能谱中有可能存在偶然的束缚态,但一定是对应一个特定的本征值(能量),而在这个值的邻域所对应的都是散射态,因此并不具备物理意义((1)在连续谱中实验恰好取到这个能量的概率是0。(2)即使瞬时可以做到,由于系统和环境之间的相互作用,肯定会破坏这个束缚态),我们不应该认为这是个“真实”的束缚态,因此说束缚态一定有离散能级不应算错。详情可参阅朗道的《量子力学(非相对论理论》§10定态和§18 薛定谔方程的基本性质。
    分立能级具有束缚态的简单理解是,对于分立能级的任意一个本征波函数,它的模方对全空间积分应该是有限值(从而可以归一化,几率解释才可以成立),因此必然在无穷远处要趋于零,因此是束缚态。

No comments:

Post a Comment