在这里,复述一下吉布斯的《统计力学基本原理》一书著名前言中的部分内容是有益的:
我们可以想象许多性质相同的系统,这些系统在给定时刻的构造和速度不同,不仅仅是细微地不同,而且它所以不同乃是为了包含每一种可想象的构造和速度组合。我们在此提出问题,不是通过相继的构造跟踪一个特定系统,而是确定整个系统在任何给定时刻如何分布于各种可信的构造和速度之中,其时分布已形成了一段时间。……
http://blog.ifeng.com/article/3605247.html
http://202.114.36.12/lgx/lectures/se8.pdf
狄拉克δ函数不能算是一個函數,因為滿足以上條件的函數是不存在的。但可以用分佈的概念來解釋,稱為狄拉克δ分布,或δ分布,
经验上确定的热力学定律表达大量粒子系统的近似的、可能的行为,或更准确地说,它们把此种系统的力学定律表达为好似多个人,这些人没有本事把握与单个粒子相关的数量级的量,他们也不能足够多地重复其实验,以获得哪怕是最可能的结果。
吉布斯通过系综方法把群体动力学引入了物理学。系综由相空间中的点“云”来描述(参见图1.4)。这种点云由一个有简单物理解释的函数ρ(q,p,t)来描述:即在时刻t,在一个围绕着点(q,p)的相空间小区域内找到一个点的概率。轨道对应于一种特殊情形,其中函数ρ除在点(q0,p0)以外处处都为零,这种状况由ρ的一个特殊形式来描述。那些除了在一个点外,在其他各处都为零的函数叫做狄拉克函数δ(x)。函数δ(x-x0)对所有x≠x0的点都为零。因此,对零时刻的单个轨道来说,分布函数ρ的形式是ρ=δ(q-q0)δ(p-p0)。[注]以后我们还会回到δ(x)函数的特性上来。
No comments:
Post a Comment