为什么要把那么多时间花在给自然法则一个包括不可逆性和概率的推广上?其中的一个原因是思想意识原因——意欲在我们对自然的描述中实现一个准神灵的观点。然而,这里仍然存在一个专门的数学难题。我们的工作基于一个在最近几十年才达到前沿的数学领域——泛函分析——的新进展。我们将看到,我们的表述需要一个扩展的泛函空间。这个新的数学领域目前在认识自然法则中扮演着十分重要的角色,它使用被芒德布罗(Benoit Mandelbrot)称为分形的广义函数。”我们需要一种“神灵”观点来保留确定论思想。但没有任何人的测量,没有任何理论预言能以无限精度给我们初始条件。
考虑拉普拉斯妖在确定性混沌的世界里变成什么,是有意义的。除非他以无限精度知道初始条件,否则他不再能预测未来。只有那样,它才能继续使用轨道描述。但有一种更强大的不稳定性,无论初始描述的精度如何,它都会使轨道破坏。这种形式的不稳定性极其重要,因为它既适用于经典力学又适用于量子力学。
我们的故事确实始于19世纪末庞加莱的工作。按照庞加莱,动力学系统由其粒子的动能加上粒子相互作用产生的势能来描述。一个简单的例子是自由的无相互作用的粒子。在这里没有势能,而且轨道的计算是平凡的,这样的系统被定义为可积的。庞加莱问,是不是所有的系统都可积?我们能否选择适当的变量来消去势能?通过显示这通常是不可能的,他证明了动力学系统基本上都是不可积的。
在此有必要稍加停顿,仔细思考一下庞加莱的结论。假设庞加莱证明所有的动力学系统都是可积的,这将意味着所有的动力学运动与自由无相互作用粒子是同构的。这将没有时间之矢的立足之地,因而也就没有自组织和生命本身的立足之地。可积系统描述的是一个静态的、确定性的世界。庞加莱不仅证实了不可积性,而且指明了造成不可积性的原因,即自由度之间共振的存在。我们将在第五章更详细地看到,每一种运动形式都对应于一个频率,这方面最简单的例子是给走质点和中心点的谐振子。质点受到的力与它离开中心点的距离成正比,如果我们将质点从中心拉开,它会以一个确定的频率振动。正是通过这些频率,我们得到共振这个对庞加莱定理十分重要的概念。
我们都多多少少熟悉共振的概念,当我们迫使弹簧离开其平衡位置,它将以一个特征频率振动。现在给弹簧施加一个外力,这一外力具有可变的频率。当弹簧的频率与外力的频率二者有一个简单的数字比率(即其中一个频率是另一个频率的数倍)时,弹簧的振幅将急剧加大。当我们在一件乐器上演奏一个音符时会发生同样的现象。我们会听见谐音。共振“耦合”声音。
现在考虑由两个频率所刻画的系统。根据定义,只要n1 ω1+n2 ω2=0,其中nl和n2都是非零整数,我们就得到了共振。这表明ω1/ω2=-n2/n1,即频率之比为有理数。庞加莱已表明,共振在动力学中带来具有“危险的”分母1/(n1ω1+n2ω2)的项,只要有共振(即相空间中的点满足n1ω1+n2ω2=0),这些项就会发散。其结果是,我们计算轨道时会碰到障碍。
这就是庞加莱不可积性的来源。18世纪的天文学家就已知道“小分母问题”,但庞加莱定理表明,这一困难是绝大多数动力学系统所共有的。庞加莱将其称为“动力学的普遍问题”。然而,在相当长的时期里,庞加莱结果的重要性被忽视了。
No comments:
Post a Comment