伊利亚.普利高津《确定性的终结》
中文版序
我非常高兴本书被译成中文,将为中国读者所接受。这也给我一个机会来强调本书的一个重要观点——科学与文化的联系。日本科学家汤川秀树指出:“听起来也许奇怪,身为一名物理学家,我却越来越强烈地感受到现代物理学与我自身的疏远。”西方科学强调“自然法则”思想,这与中国的传统形成鲜明对照,因为,自然之中文字面意义是“天然”。
西方科学和西方哲学一贯强调主体与客体之间的二元性,这与注重天人合一的中国哲学相悖。
本书所阐述的结果把现代科学拉近中国哲学。自组织的宇宙也是“自发”的世界,它表达一种与西方科学的经典还原论不同的整体自然观。我们愈益接近两种文化传统的交汇点。我们必须保留已证明相当成功的西方科学的分析观点,同时必须重新表述把自然的自发性和创造性囊括在内的自然法则。本书的雄心正是以一种广大读者易于接受的方式阐述这一综合。自本书于1996年问世以来,沿着这条思路又取得了更多的进展。
在本世纪末,我们并非面对科学的终结,而是目睹新科学的萌生。我衷心希望,中国青年一代科学家能为创建这一新科学作出贡献。
最后,我要感谢湛敏女士对本书的翻译,感谢上海科技教育出版社出版本书的中文版。
I.普利高津
1998年8月5日于布鲁塞尔
中文版序
我非常高兴本书被译成中文,将为中国读者所接受。这也给我一个机会来强调本书的一个重要观点——科学与文化的联系。日本科学家汤川秀树指出:“听起来也许奇怪,身为一名物理学家,我却越来越强烈地感受到现代物理学与我自身的疏远。”西方科学强调“自然法则”思想,这与中国的传统形成鲜明对照,因为,自然之中文字面意义是“天然”。
西方科学和西方哲学一贯强调主体与客体之间的二元性,这与注重天人合一的中国哲学相悖。
本书所阐述的结果把现代科学拉近中国哲学。自组织的宇宙也是“自发”的世界,它表达一种与西方科学的经典还原论不同的整体自然观。我们愈益接近两种文化传统的交汇点。我们必须保留已证明相当成功的西方科学的分析观点,同时必须重新表述把自然的自发性和创造性囊括在内的自然法则。本书的雄心正是以一种广大读者易于接受的方式阐述这一综合。自本书于1996年问世以来,沿着这条思路又取得了更多的进展。
在本世纪末,我们并非面对科学的终结,而是目睹新科学的萌生。我衷心希望,中国青年一代科学家能为创建这一新科学作出贡献。
最后,我要感谢湛敏女士对本书的翻译,感谢上海科技教育出版社出版本书的中文版。
I.普利高津
1998年8月5日于布鲁塞尔
0
作者附言
我力求本书通俗易懂,为广大读者所接受。然而,特别是在第五章和第六章,我决定涉及较多的专门细节,因为我提交的许多结果显著偏离传统观点。尽管本书是数十年研究的成果,却仍有许多问题有待解答。但考虑到我们每个人的生命有涯,我的工作成果就如此奉献给大家。我不是想邀请读者来参观考古博物馆,而是想让读者领略科学探险的乐趣。
我力求本书通俗易懂,为广大读者所接受。然而,特别是在第五章和第六章,我决定涉及较多的专门细节,因为我提交的许多结果显著偏离传统观点。尽管本书是数十年研究的成果,却仍有许多问题有待解答。但考虑到我们每个人的生命有涯,我的工作成果就如此奉献给大家。我不是想邀请读者来参观考古博物馆,而是想让读者领略科学探险的乐趣。
引言 :一种新的理性?
本世纪初,波普尔(Karl Popper)在他所著的《开放的宇宙——关于非决定论的论争》一书中写道:“常识倾向于认为每一事件总是由在先的某些事件所引起,所以每个事件是可以解释或预言的。……另一方面,……常识又赋予成熟而心智健全的人……在两种可能的行为之间自由选择的能力。”这一詹姆斯(Wlliam James)所称的“决定论的二难推理”与时间的含义密切相关。未来是给定的还是不断变化的结构?这个二难推理对每个人都非常重要,因为时间是我们存在的基本维度。正是把时间结合到伽利略物理学概念体系之中,标志着近代科学的起源。
人类思想这一成就也是本书所述核心问题的根源,即对时间之失的否定。众所周知,爱因斯坦(Albert Einstein)常常说:“时间是一种错觉。”的确,物理学基本定律所描述的时间,从经典的牛顿动力学到相对论和量子力学,均未包含过去与未来之间的任何区别。甚至对于今日的许多物理学家而言,这已是一种信念:就自然的基本描述而言,不存在什么时间之矢。
然而,无论在化学、地质学、宇宙学、生物学或者人文学科领域,处处都可以见到未来和过去扮演着不同的角色。从物理学描述的时间对称的世界如何产生时间之矢?这就是时间详谬——本书的中心议题之一。
时间佯谬是在19世纪下半叶维也纳物理学家玻尔兹曼(Ludwig Boltzfmann)的研究工作之后被确认的,他试图仿效达尔文(Charles Darwinn)在生物学中的研究,系统阐述物理学中的演化方法。但在当时,牛顿物理学定律长期被公认为客观知识的典范。由于牛顿定律隐含着过去与未来之间的等价性,因而,任何赋予时间之矢以基本意义的尝试均因危及到这一典范而受到抵制。牛顿定律在它适用的领域被认为是终极完善的,这有点像今天许多物理学家把量子力学看作是终极完善的一样。那么,在不破坏人类思想的这些惊人成就的情况下,我们如何引入单向时间呢?
自从玻尔兹曼以来,时间之矢被贬低到现象学范畴。我们人作为不完善的观测者,通过我们对自然的描述中引入近似,造成了过去与未来之间的差异。这依然是盛行的科学说法,有些专家悲叹我们立于科学无能为力和无法解决的奥秘面前。我们相信不再会是这样了,原因在于最近的两个进展:一方面是非平衡物理学,另一方面是肇始于混沌概念的不稳定系统动力学,二者都取得了长足的进展。
在过去几十年间,一门新学科——非平衡过程物理学——诞生了。这门新学科产生了像自组织和耗散结构这样一些概念,如今它们广泛应用于许多学科,包括宇宙学,化学,生物学以及生态学和社会科学。非平衡过程物理学描述了单向时间效应,为不可逆性这一术语给出了新的含义。过去,时间之矢只是通过像扩散或粘性这样的简单过程出现在物理学中,在通常的时间可逆动力学未作任何扩展的情况下,这是可以理解的。但今天已非同以往。我们现在知道,不可逆性导致了诸如涡旋形成、化学振荡和激光等许多新现象,所有这些现象都说明了时间之矢至关重要的建设性作用。不可逆性再也不会被认为是一种如果我们具备了完善的知识就会消失的表象。不可逆性导致了相干,其影响包含亿万个粒子。形象地说:不具备时间之矢的平衡态物质,是“盲目的”;具备了时间之矢,它才开始“看见”。没有这种起因于不可逆非平衡过程的相干,很难想象地球上会出现生命。因此,断言时间之矢“仅仅是现象学的”,或者是主观的,皆属荒谬。我们确实是时间之矢之子、演化之子,而不是其祖先。
修正时间概念的第二个重要进展是不稳定系统的物理学表述。经典科学强调有序和稳定性。现在,反过来,我们在观测的所有层次上都看到了涨落、不稳定性、多种选择和有限可预测性,像混沌这样的思想已变得相当流行,影响着从宇宙学到经济学,实际上所有科学领域的思想。我们将要表明,我们现在可以扩展经典物理学和量子物理学以包括不稳定性和混沌。这样,我们会得到适合于描述我们的演化宇宙的自然法则的一种表述,其中包含时间之矢,而过去和未来也不再扮演对称的角色。从经典观点——包括量子力学和相对论——来看,自然法则表达确定性。只要给定了适当的初始条件,我们就能够用确定性来预言未来,或“溯言”过去。一旦包括了不稳定性,情况就不再是这样了,自然法则的意义发生了根本变化,因为自然法则现在表达可能性或概率。我们在此与西方思想的基本传统之一(对确定性的信念)相抵触。如同吉热泽(gerd Gigerenzer)等人在《机遇帝国》一书中所述,“尽管2000年来的科学剧变把亚里士多德(Aristotle)与巴黎的贝尔纳(Claude Bernard)分开,他们至少共享一种信念:科学与原因有关,与机遇无涉。康德(Kant)甚至鼓吹构成所有科学知识必要条件的普适的因果决定论。”
本世纪初,波普尔(Karl Popper)在他所著的《开放的宇宙——关于非决定论的论争》一书中写道:“常识倾向于认为每一事件总是由在先的某些事件所引起,所以每个事件是可以解释或预言的。……另一方面,……常识又赋予成熟而心智健全的人……在两种可能的行为之间自由选择的能力。”这一詹姆斯(Wlliam James)所称的“决定论的二难推理”与时间的含义密切相关。未来是给定的还是不断变化的结构?这个二难推理对每个人都非常重要,因为时间是我们存在的基本维度。正是把时间结合到伽利略物理学概念体系之中,标志着近代科学的起源。
人类思想这一成就也是本书所述核心问题的根源,即对时间之失的否定。众所周知,爱因斯坦(Albert Einstein)常常说:“时间是一种错觉。”的确,物理学基本定律所描述的时间,从经典的牛顿动力学到相对论和量子力学,均未包含过去与未来之间的任何区别。甚至对于今日的许多物理学家而言,这已是一种信念:就自然的基本描述而言,不存在什么时间之矢。
然而,无论在化学、地质学、宇宙学、生物学或者人文学科领域,处处都可以见到未来和过去扮演着不同的角色。从物理学描述的时间对称的世界如何产生时间之矢?这就是时间详谬——本书的中心议题之一。
时间佯谬是在19世纪下半叶维也纳物理学家玻尔兹曼(Ludwig Boltzfmann)的研究工作之后被确认的,他试图仿效达尔文(Charles Darwinn)在生物学中的研究,系统阐述物理学中的演化方法。但在当时,牛顿物理学定律长期被公认为客观知识的典范。由于牛顿定律隐含着过去与未来之间的等价性,因而,任何赋予时间之矢以基本意义的尝试均因危及到这一典范而受到抵制。牛顿定律在它适用的领域被认为是终极完善的,这有点像今天许多物理学家把量子力学看作是终极完善的一样。那么,在不破坏人类思想的这些惊人成就的情况下,我们如何引入单向时间呢?
自从玻尔兹曼以来,时间之矢被贬低到现象学范畴。我们人作为不完善的观测者,通过我们对自然的描述中引入近似,造成了过去与未来之间的差异。这依然是盛行的科学说法,有些专家悲叹我们立于科学无能为力和无法解决的奥秘面前。我们相信不再会是这样了,原因在于最近的两个进展:一方面是非平衡物理学,另一方面是肇始于混沌概念的不稳定系统动力学,二者都取得了长足的进展。
在过去几十年间,一门新学科——非平衡过程物理学——诞生了。这门新学科产生了像自组织和耗散结构这样一些概念,如今它们广泛应用于许多学科,包括宇宙学,化学,生物学以及生态学和社会科学。非平衡过程物理学描述了单向时间效应,为不可逆性这一术语给出了新的含义。过去,时间之矢只是通过像扩散或粘性这样的简单过程出现在物理学中,在通常的时间可逆动力学未作任何扩展的情况下,这是可以理解的。但今天已非同以往。我们现在知道,不可逆性导致了诸如涡旋形成、化学振荡和激光等许多新现象,所有这些现象都说明了时间之矢至关重要的建设性作用。不可逆性再也不会被认为是一种如果我们具备了完善的知识就会消失的表象。不可逆性导致了相干,其影响包含亿万个粒子。形象地说:不具备时间之矢的平衡态物质,是“盲目的”;具备了时间之矢,它才开始“看见”。没有这种起因于不可逆非平衡过程的相干,很难想象地球上会出现生命。因此,断言时间之矢“仅仅是现象学的”,或者是主观的,皆属荒谬。我们确实是时间之矢之子、演化之子,而不是其祖先。
修正时间概念的第二个重要进展是不稳定系统的物理学表述。经典科学强调有序和稳定性。现在,反过来,我们在观测的所有层次上都看到了涨落、不稳定性、多种选择和有限可预测性,像混沌这样的思想已变得相当流行,影响着从宇宙学到经济学,实际上所有科学领域的思想。我们将要表明,我们现在可以扩展经典物理学和量子物理学以包括不稳定性和混沌。这样,我们会得到适合于描述我们的演化宇宙的自然法则的一种表述,其中包含时间之矢,而过去和未来也不再扮演对称的角色。从经典观点——包括量子力学和相对论——来看,自然法则表达确定性。只要给定了适当的初始条件,我们就能够用确定性来预言未来,或“溯言”过去。一旦包括了不稳定性,情况就不再是这样了,自然法则的意义发生了根本变化,因为自然法则现在表达可能性或概率。我们在此与西方思想的基本传统之一(对确定性的信念)相抵触。如同吉热泽(gerd Gigerenzer)等人在《机遇帝国》一书中所述,“尽管2000年来的科学剧变把亚里士多德(Aristotle)与巴黎的贝尔纳(Claude Bernard)分开,他们至少共享一种信念:科学与原因有关,与机遇无涉。康德(Kant)甚至鼓吹构成所有科学知识必要条件的普适的因果决定论。”
然而,也存在反对的呼声。大物理学家麦克斯韦(James Clerk Maxwell)就谈到“一种新型的知识”会克服决定论的偏见。但总的来说,盛行的观点是,概率是心智的状态,不是世界的状态。尽管量子力学已把统计概念囊括于物理学核心之中,如今仍然如此,但量子力学的基本对象波函数却满足确定性的时间可逆方程。要引人概率和不可逆性,量子力学的正统表述需要一个观测者。
观测者可以通过观测在时间对称的宇宙中引入不可逆性。再者,像在时间样谬中一样,从某种意义上说,我们对宇宙的演化模式负有责任。观测者的这种作用,给量子力学涂上了主观色彩。这也是妨碍爱因斯坦认可量子力学的主要原因。它引起了无休止的争论。
把不可逆性或者时间流引入到量子理论中,观测者的作用是一个必要的概念。然而,一旦证明不稳定性破坏了时间对称性,观测者就不再重要了。解决了时间样谬,我们也就解决了量子佯谬,从而得到一个新的、量子论的实在论表述。这并不意味着回到经典决定论的正统观念,恰恰相反,我们超出了与传统量子论定律相联系的确定性,强调概率的基本作用。无论在经典物理学还是在量子物理学中,基本定律现在表达概率。我们不仅需要定律,而且需要把完全新颖的要素引入自然描述的事件。这种新要素使我们得到麦克斯韦所期望的“新型的知识”。对于经典概率论的奠基人之一棣莫弗(Abraham De Moivre)来说,机遇既无法定义也难以理解。我们将表明,我们现在能够把概率包括到物理学基本定律的表述之中。只要做到这一点,牛顿确定论就破产了;未来不再由过去所确定,过去与未来之间的对称性被打破了。这使我们面对最困难的问题:什么是时间之源?时间起源于大爆炸,还是先于我们的宇宙而存在?
这些问题把我们置于空间和时间的边缘。详细解释我们主张的宇宙学含义,需要写一本专著。扼要地说,我们认为,“大爆炸”是与产生我们宇宙的介质内的不稳定性相联系的一个事件,它标志着我们宇宙的起源,但不代表时间的起源。尽管我们的宇宙有年龄,但产生我们宇宙的介质却没有年龄。时间没有开端,也许亦无终点。
但是在这里,我们开始涉足臆测的世界。本书的主要目的是提出低能区内自然法则的表述。这是宏观物理学、化学和生物学的领域,亦是人类存在实实在在发生的领域。
时间和决定论难题,自从前苏格拉底学者以来一直是西方思想的核心。在一个确定性世界里,我们如何构想人的创造力或行动准则呢?
这一问题反映了西方人文主义传统中存在的深刻的矛盾,这个传统强调两个方面,即知识和客观性的重要性,以及个体责任和民主理想所蕴含的自由选择。波普尔和其他许多哲学家都指出,只要自然单纯由确定性科学所描述,我们就面临无法解决的难题。把我们与自然界分离开来,是现代精神难以接受的一种二元论。我们在本书中的目标是显示我们现在能够克服这一障碍。倘若如塔纳斯(Richard Tarnas)所述,“西方世界的激情在于与其存在的基础重新统一”,那么说我们正在接近我们激情的目标也许并不为过。
人类正处于一个转折点上,正处于一种新理性的开端。在这种新理性中,科学不再等同于确定性,概率不再等同于无知。我们完全赞同勒克莱尔(YVor Leclerc)的看法,他说:“在本世纪,我们遇到继牛顿物理学在18世纪取得胜利以来科学与哲学的分离。”布罗诺夫斯基(Jacob Bronowski)如是很好表达了同样的思想:“认识人性和认识自然界内的人类境况,是科学的一个中心课题。”
在本世纪末,常常有人问科学的未来可能是什么样子。对于某些人,比如霍金(Stephen W.Hawking),他在所著的《时间简史》中指出,我们接近终结,即到了接近了解“上帝意志”的时刻。相反,我们认为,我们确实处于一个新科学时代的开端。我们正在目睹一种科学的诞生,这种科学不再局限于理想化和简单化情形,而是反映现实世界的复杂性,它把我们和我们的创造性都视为在自然的所有层次上呈现出来的一个基本趋势。
观测者可以通过观测在时间对称的宇宙中引入不可逆性。再者,像在时间样谬中一样,从某种意义上说,我们对宇宙的演化模式负有责任。观测者的这种作用,给量子力学涂上了主观色彩。这也是妨碍爱因斯坦认可量子力学的主要原因。它引起了无休止的争论。
把不可逆性或者时间流引入到量子理论中,观测者的作用是一个必要的概念。然而,一旦证明不稳定性破坏了时间对称性,观测者就不再重要了。解决了时间样谬,我们也就解决了量子佯谬,从而得到一个新的、量子论的实在论表述。这并不意味着回到经典决定论的正统观念,恰恰相反,我们超出了与传统量子论定律相联系的确定性,强调概率的基本作用。无论在经典物理学还是在量子物理学中,基本定律现在表达概率。我们不仅需要定律,而且需要把完全新颖的要素引入自然描述的事件。这种新要素使我们得到麦克斯韦所期望的“新型的知识”。对于经典概率论的奠基人之一棣莫弗(Abraham De Moivre)来说,机遇既无法定义也难以理解。我们将表明,我们现在能够把概率包括到物理学基本定律的表述之中。只要做到这一点,牛顿确定论就破产了;未来不再由过去所确定,过去与未来之间的对称性被打破了。这使我们面对最困难的问题:什么是时间之源?时间起源于大爆炸,还是先于我们的宇宙而存在?
这些问题把我们置于空间和时间的边缘。详细解释我们主张的宇宙学含义,需要写一本专著。扼要地说,我们认为,“大爆炸”是与产生我们宇宙的介质内的不稳定性相联系的一个事件,它标志着我们宇宙的起源,但不代表时间的起源。尽管我们的宇宙有年龄,但产生我们宇宙的介质却没有年龄。时间没有开端,也许亦无终点。
但是在这里,我们开始涉足臆测的世界。本书的主要目的是提出低能区内自然法则的表述。这是宏观物理学、化学和生物学的领域,亦是人类存在实实在在发生的领域。
时间和决定论难题,自从前苏格拉底学者以来一直是西方思想的核心。在一个确定性世界里,我们如何构想人的创造力或行动准则呢?
这一问题反映了西方人文主义传统中存在的深刻的矛盾,这个传统强调两个方面,即知识和客观性的重要性,以及个体责任和民主理想所蕴含的自由选择。波普尔和其他许多哲学家都指出,只要自然单纯由确定性科学所描述,我们就面临无法解决的难题。把我们与自然界分离开来,是现代精神难以接受的一种二元论。我们在本书中的目标是显示我们现在能够克服这一障碍。倘若如塔纳斯(Richard Tarnas)所述,“西方世界的激情在于与其存在的基础重新统一”,那么说我们正在接近我们激情的目标也许并不为过。
人类正处于一个转折点上,正处于一种新理性的开端。在这种新理性中,科学不再等同于确定性,概率不再等同于无知。我们完全赞同勒克莱尔(YVor Leclerc)的看法,他说:“在本世纪,我们遇到继牛顿物理学在18世纪取得胜利以来科学与哲学的分离。”布罗诺夫斯基(Jacob Bronowski)如是很好表达了同样的思想:“认识人性和认识自然界内的人类境况,是科学的一个中心课题。”
在本世纪末,常常有人问科学的未来可能是什么样子。对于某些人,比如霍金(Stephen W.Hawking),他在所著的《时间简史》中指出,我们接近终结,即到了接近了解“上帝意志”的时刻。相反,我们认为,我们确实处于一个新科学时代的开端。我们正在目睹一种科学的诞生,这种科学不再局限于理想化和简单化情形,而是反映现实世界的复杂性,它把我们和我们的创造性都视为在自然的所有层次上呈现出来的一个基本趋势。
第一章 伊壁鸠鲁的二难推理
I
宇宙是否由确定性定律所支配?时间的本质是什么?这些问题在西方理性的萌发时期即已被前苏格拉底学者阐述过了。2500年之后,它们依然与我们同在。然而,与混沌和不稳定性相联系的物理学和数学最新进展,却开辟了不同的研究道路。我们正开始用一种新的观点审视这些涉及到人类在自然界中的地位的难题。我们现在可以避开过去的那些矛盾了。
希腊哲学家伊壁鸠鲁(Epicurus)第一个表述了一个根本性的二难推理。作为德谟克利特(Democritus)的追随者,他认为世界由原子和虚空组成。而且,他断言原子以相同的速度平行地通过虚空下落。那么,它们怎么发生碰撞?与原子的组合密切相关的新奇性又如何出现呢?对伊壁鸠鲁来说,科学的问题、自然的可理解性问题以及人的命运问题是不可分离的。在确定性的原子世界里,人类自由的含义是什么呢?伊壁鸠鲁在给梅内苏斯(Meneceus)的信中写道:“我们的意志是自主的和独立的,我们可以赞扬它或指责它。因此,为了保持我们的自由,保持对神的信仰比成为物理学家命运的奴隶更好。前者给予我们通过预言和牺牲以赢得神的仁慈的希望;后者相反,它带来一种不可抗拒的必然性。”这一引语听上去是多么现代呀!西方传统中最伟大的思想家们,像康德。怀特海(Alfred North Whitehead)和海德格尔(Martin Heidegger),都一而再地感到,他们不得不在异化的科学与反科学的哲学之间作出悲剧性的选择。他们试图找到一些折衷办法,但没有一个办法证明令人满意。
伊壁鸠鲁认为,他找到了解决这个二难推理困境的办法,他称之为倾向。卢克莱修(Lucretius)指出:“当一些物体因它们自身的重量而通过虚空直线下落,在十分不确定的时间和不确定的地点,它们就会稍稍偏离其轨道,称之为改变了方向是恰如其分的。”然而,没有任何机制可以解释这种倾向。毫不奇怪,它总是被看作是一种外来的、随意的因素。
但我们的确需要这种新奇性吗?照波普尔的理解,对于赫拉克利特(Heraclitus)来说,“真理就是抓住自然的基本演化,即把它作为内在的无限之物,作为它自身的过程加以表述”。巴门尼德(Palmnides)则持相反观点。他在其关于存在独特实在的名诗中写道:“它不是过去,也不是将来,正是现在,才是一切。”
有趣的是,伊壁鸠鲁的倾向在本世纪的科学中反复出现。爱因斯坦在他关于光子发射与原子能级间跃迁的经典论文(1916)里,清楚地表达了他对科学确定论的信念,尽管他假设这些发射由机遇所支配。
希腊哲学不能解决这个二难推理。柏拉图(Plato)将真理与存在联系在一起,即与演化之外不变的实在相联系。然而他感到了这种状况的二难特征,因为它贬低生命和思想。在《智者篇》中,柏拉图断言我们既需要存在也需要演化。
这种二元性直到现在仍在困扰着西方思想。如法国哲学家瓦尔(Jean Wahl)所强调的,西方哲学史总的来说是一个不愉快的历史,其特征是在作为自动机的世界与上帝主宰宇宙的神学之间不断地摇摆。两者都是确定论形式。
这场争论在18世纪随着“自然法则”的发现发生了转折。最重要的例子就是牛顿的力和加速度关系定律。这一定律是确定性的,更重要的是,它是时间可逆的。一旦知道了初始条件,我们既可以推算出所有的后继状态,也可以推演出先前的状态。此外,过去和未来扮演着相同的角色,因为牛顿定律在时间t→-t反演下具有不变性。这导致了拉普拉斯妖的出现:拉普拉斯(Pierre-Simon de Laplace)想象这个小妖有能力去观察宇宙的现今状态并预言其演化。
众所周知,牛顿定律在20世纪已被量子力学和相对论所取代。然而牛顿定律的基本特性——确定性和时间对称性——却幸存下来。不错,量子力学不再涉及轨道而是与波函数相关(参见本章第IV节和第六章),但重要的是,我们注意到量子力学的基本方程式薛定谔方程同样是确定性的和时间可逆的。
I
宇宙是否由确定性定律所支配?时间的本质是什么?这些问题在西方理性的萌发时期即已被前苏格拉底学者阐述过了。2500年之后,它们依然与我们同在。然而,与混沌和不稳定性相联系的物理学和数学最新进展,却开辟了不同的研究道路。我们正开始用一种新的观点审视这些涉及到人类在自然界中的地位的难题。我们现在可以避开过去的那些矛盾了。
希腊哲学家伊壁鸠鲁(Epicurus)第一个表述了一个根本性的二难推理。作为德谟克利特(Democritus)的追随者,他认为世界由原子和虚空组成。而且,他断言原子以相同的速度平行地通过虚空下落。那么,它们怎么发生碰撞?与原子的组合密切相关的新奇性又如何出现呢?对伊壁鸠鲁来说,科学的问题、自然的可理解性问题以及人的命运问题是不可分离的。在确定性的原子世界里,人类自由的含义是什么呢?伊壁鸠鲁在给梅内苏斯(Meneceus)的信中写道:“我们的意志是自主的和独立的,我们可以赞扬它或指责它。因此,为了保持我们的自由,保持对神的信仰比成为物理学家命运的奴隶更好。前者给予我们通过预言和牺牲以赢得神的仁慈的希望;后者相反,它带来一种不可抗拒的必然性。”这一引语听上去是多么现代呀!西方传统中最伟大的思想家们,像康德。怀特海(Alfred North Whitehead)和海德格尔(Martin Heidegger),都一而再地感到,他们不得不在异化的科学与反科学的哲学之间作出悲剧性的选择。他们试图找到一些折衷办法,但没有一个办法证明令人满意。
伊壁鸠鲁认为,他找到了解决这个二难推理困境的办法,他称之为倾向。卢克莱修(Lucretius)指出:“当一些物体因它们自身的重量而通过虚空直线下落,在十分不确定的时间和不确定的地点,它们就会稍稍偏离其轨道,称之为改变了方向是恰如其分的。”然而,没有任何机制可以解释这种倾向。毫不奇怪,它总是被看作是一种外来的、随意的因素。
但我们的确需要这种新奇性吗?照波普尔的理解,对于赫拉克利特(Heraclitus)来说,“真理就是抓住自然的基本演化,即把它作为内在的无限之物,作为它自身的过程加以表述”。巴门尼德(Palmnides)则持相反观点。他在其关于存在独特实在的名诗中写道:“它不是过去,也不是将来,正是现在,才是一切。”
有趣的是,伊壁鸠鲁的倾向在本世纪的科学中反复出现。爱因斯坦在他关于光子发射与原子能级间跃迁的经典论文(1916)里,清楚地表达了他对科学确定论的信念,尽管他假设这些发射由机遇所支配。
希腊哲学不能解决这个二难推理。柏拉图(Plato)将真理与存在联系在一起,即与演化之外不变的实在相联系。然而他感到了这种状况的二难特征,因为它贬低生命和思想。在《智者篇》中,柏拉图断言我们既需要存在也需要演化。
这种二元性直到现在仍在困扰着西方思想。如法国哲学家瓦尔(Jean Wahl)所强调的,西方哲学史总的来说是一个不愉快的历史,其特征是在作为自动机的世界与上帝主宰宇宙的神学之间不断地摇摆。两者都是确定论形式。
这场争论在18世纪随着“自然法则”的发现发生了转折。最重要的例子就是牛顿的力和加速度关系定律。这一定律是确定性的,更重要的是,它是时间可逆的。一旦知道了初始条件,我们既可以推算出所有的后继状态,也可以推演出先前的状态。此外,过去和未来扮演着相同的角色,因为牛顿定律在时间t→-t反演下具有不变性。这导致了拉普拉斯妖的出现:拉普拉斯(Pierre-Simon de Laplace)想象这个小妖有能力去观察宇宙的现今状态并预言其演化。
众所周知,牛顿定律在20世纪已被量子力学和相对论所取代。然而牛顿定律的基本特性——确定性和时间对称性——却幸存下来。不错,量子力学不再涉及轨道而是与波函数相关(参见本章第IV节和第六章),但重要的是,我们注意到量子力学的基本方程式薛定谔方程同样是确定性的和时间可逆的。
1994年10月,《科学美国人》杂志出了一期“宇宙中的生命”专刊。在所有层次上,无论是宇宙学、地质学、生物学,还是人类社会,我们都看到了与不稳定性和涨落相关的演化过程。因而我们不能回避这个问题:这些演化模式如何建立在物理学基本定律的基础之上?只有一篇由著名物理学家温伯格(Steven Weinberg)写的文章,与这一问题有关。他写道:“我们虽然喜欢采用一种统一的自然现,但在宇宙中智慧生命的作用中仍遇到一个棘手的二元论。……一方面,薛定谔方程以一种完美的确定论方法描述了任何系统的波函数如何随时间而变化;另一方面,相当不同的一个方面,当有人进行测量时,又有一组原则规定如何用波函数推算各种可能结局的概率。”
难道这表明,通过我们的测量,我们能回到宇宙演化的初始状态吗?温伯格谈到一个棘手的二元性,一种在现在的许多出版物中都能找到的观点。例如,霍金在《时间简史》中鼓吹一种宇宙学的纯粹几何学解释。简括言之,时间就是空间的机遇。但霍金也明白这一解释是不够的。我们需要一个时间之矢来研究智慧生命。因此,像其他许多宇宙学家一样,霍金引入了所谓人存原理。但这一原理与伊壁鸠鲁的倾向一样武断,霍金对于人存原理如何能从静态的几何宇宙中产生出来没有作任何说明。
如上所述,爱因斯坦试图以我们被视为纯粹的自动机为代价,来维护包括人类在内的自然的统一。这也是斯宾诺莎(Baruch Spinoza)的观点。但也是在 17世纪,笛卡儿(Rene Descartes)提出了另一种途径,它涉及二元论的概念:一方面是由几何学描述的物质 res extensa(广延物);另一方面是与res cogitans(思想物)相联系的心智。“笛卡儿通过这种方法阐述了简单物理系统(如无摩擦的摆)的行为与人脑的运作之间的显著差异。奇怪的是,人存原理把我们带回到了笛卡儿的二元论。
在《皇帝的新意》中,彭罗斯(Roger Penrose)写道:“正是我们目前缺乏对物理学基本定律的认识,妨碍了我们用物理学或逻辑学术语去掌握‘心智’这一概念。”我们相信彭罗斯是对的:我们需要一种物理学基本定律的新表述。自然的演化方面必须用物理学基本定律来表达。只有这样,我们才能给伊壁鸠鲁的二难推理一个满意的回答。非决定论和时间不对称都必须在动力学中找到原因。那些不包含这些特征的表述是不完备的,正如那些忽略引力或电磁相互作用的物理学表述一样不完备。
概率在从经济学到遗传学的大多数学科中起着至关重要的作用。然而,认为概率不过是一种心智状态的思想依然存在。我们现在必须走得更远,必须显示概率如何进入物理学(不管是经典物理学还是量子物理学)基本定律。目前,提出自然法则的新表述是可能的。我们通过提出新表述获得了更能接受的描述,在这一描述中有自然法则的位置,也有新奇性和创造性的位置。
难道这表明,通过我们的测量,我们能回到宇宙演化的初始状态吗?温伯格谈到一个棘手的二元性,一种在现在的许多出版物中都能找到的观点。例如,霍金在《时间简史》中鼓吹一种宇宙学的纯粹几何学解释。简括言之,时间就是空间的机遇。但霍金也明白这一解释是不够的。我们需要一个时间之矢来研究智慧生命。因此,像其他许多宇宙学家一样,霍金引入了所谓人存原理。但这一原理与伊壁鸠鲁的倾向一样武断,霍金对于人存原理如何能从静态的几何宇宙中产生出来没有作任何说明。
如上所述,爱因斯坦试图以我们被视为纯粹的自动机为代价,来维护包括人类在内的自然的统一。这也是斯宾诺莎(Baruch Spinoza)的观点。但也是在 17世纪,笛卡儿(Rene Descartes)提出了另一种途径,它涉及二元论的概念:一方面是由几何学描述的物质 res extensa(广延物);另一方面是与res cogitans(思想物)相联系的心智。“笛卡儿通过这种方法阐述了简单物理系统(如无摩擦的摆)的行为与人脑的运作之间的显著差异。奇怪的是,人存原理把我们带回到了笛卡儿的二元论。
在《皇帝的新意》中,彭罗斯(Roger Penrose)写道:“正是我们目前缺乏对物理学基本定律的认识,妨碍了我们用物理学或逻辑学术语去掌握‘心智’这一概念。”我们相信彭罗斯是对的:我们需要一种物理学基本定律的新表述。自然的演化方面必须用物理学基本定律来表达。只有这样,我们才能给伊壁鸠鲁的二难推理一个满意的回答。非决定论和时间不对称都必须在动力学中找到原因。那些不包含这些特征的表述是不完备的,正如那些忽略引力或电磁相互作用的物理学表述一样不完备。
概率在从经济学到遗传学的大多数学科中起着至关重要的作用。然而,认为概率不过是一种心智状态的思想依然存在。我们现在必须走得更远,必须显示概率如何进入物理学(不管是经典物理学还是量子物理学)基本定律。目前,提出自然法则的新表述是可能的。我们通过提出新表述获得了更能接受的描述,在这一描述中有自然法则的位置,也有新奇性和创造性的位置。
本章开头,我们提到过前苏格拉底学者。事实上,我们受益于人类历史形成以来古希腊人的两个理念:第一,是自然的“可理解性”,或用怀特海的话:“建立一个有条理的、逻辑的、关于普遍思想的必不可少的系统,使我们经验的每个要素都能得到解释。”第二,是建立在人的自由、创造性和责任感前提之上的民主思想。只要科学仍将自然描述为一架自动机,那么,这两个理念就是相互矛盾的。这正是我们要着手克服的矛盾。
II
在第1节里,我们强调了时间和决定论难题形成了科学与哲学之间,或换言之,斯诺(C.P.Snow)的“两种文化”之间的分界线。但科学远不是坚如磐石的集团。事实上,19世纪给我们留下了双重遗产:诸如牛顿定律那样描述了一个时间可逆宇宙的自然定律;以及与熵相关联的一种演化描述。
熵是热力学的一个重要组成部分,热力学是专门研究有时间方向的不可逆过程的一门学科。每个人在某种程度上都熟悉这些不可逆过程,像放射性衰变,或者是使流体的流动变慢的粘性。在时间可逆过程中,例如无摩擦摆的运动,未来和过去起着相同的作用(我们可以用未来的“+t”替换过去的“-t”);不可逆过程与可逆过程相反,它有一个时间方向。过去准备的一块放射性物质会在将来消失。由于粘性,液体的流动将会随时间变慢。
时间方向的原初作用在我们研究的宏观层次上,如化学反应或输运过程中,是很明显的。我们从会起反应的化学化合物开始。随着时间的推移,它们达到平衡,反应停止。与此相似,如果我们从一种不均匀的状态开始,扩散会将该系统引致均匀。太阳辐射就是不可逆核过程的结果。如果不考虑不计其数的决定天气和气候变化的不可逆过程,就不可能对生态圈进行描述。自然界既包括时间可逆过程,又包括时间不可逆过程,但公平地说,不可逆过程是常规,而可逆过程是例外。可逆过程对应于理想化:我们必须忽略摩擦以使摆可逆地摆动。此种理想化是成问题的,因为自然界中不存在绝对的虚空。如上所述,时间可逆过程由不因时间反演而改变的运动方程所描述,经典力学中的牛顿方程或量子力学中的薛定谔方程皆如此。然而对不可逆过程而言,我们需要一个打破时间对称性的描述。
可逆过程和不可逆过程之间的差异,是通过与所谓热力学第二定律相联系的熵的概念引入的。早在1865年熵就由克劳修斯(Rudolf Julius Clausius)所定义(熵在希腊文中就指“演化”)。按照热力学第二定律,不可逆过程产生熵。相反,可逆过程使熵保持不变。
我们将反复回到这个第二定律上来。现在,我们先回忆一下克劳修斯著名的表述:“宇宙的能量守恒。宇宙的熵增加。”熵的增加为发生在宇宙中的不可逆过程所致。克劳修斯的陈述是第一个以不可逆过程的存在为基础的宇宙演化观点的表述。爱丁顿(Arthur Stanley Eddington)把熵称作“时间之矢”。但从物理学基本定律来看,却不应当存在任何不可逆过程。因此,我们看到,我们从19世纪继承了两个相互矛盾的自然观,即以动力学定律为基础的时间可逆观点和以熵为基础的演化观点。怎样调和这些矛盾的观点呢?过了这么多年,这个难题依然与我们同在。
对维也纳物理学家玻尔兹曼来说,19世纪是达尔文的世纪。达尔文在这个世纪把生命确立为一个永无终结的进化过程的结果,从而将演化置于我们对自然的认识的中心。然而,对大多数物理学家来说,玻尔兹曼的名字如今却与和达尔文的结论完全对立的结论联系在一起:玻尔兹曼被错怪为证明了不可逆性仅仅是一种错觉。玻尔兹曼的悲剧在于,试图在物理学中取得达尔文在生物学中取得的成就——却陷于绝境。
乍看起来,19世纪的这两个巨人所用方法的相似之处是很显著的。达尔文表明,如果我们从研究群体而不是从研究个体开始,就可以理解依赖于选择压力的个体易变性如何产生漂变。对应地,玻尔兹曼认为,从个体的动力学轨道开始,我们就不能理解热力学第二定律及其所预言的熵的自发增加;我们必须从大的粒子群体开始。熵增是这些粒子间大量碰撞造成的全局漂变。
II
在第1节里,我们强调了时间和决定论难题形成了科学与哲学之间,或换言之,斯诺(C.P.Snow)的“两种文化”之间的分界线。但科学远不是坚如磐石的集团。事实上,19世纪给我们留下了双重遗产:诸如牛顿定律那样描述了一个时间可逆宇宙的自然定律;以及与熵相关联的一种演化描述。
熵是热力学的一个重要组成部分,热力学是专门研究有时间方向的不可逆过程的一门学科。每个人在某种程度上都熟悉这些不可逆过程,像放射性衰变,或者是使流体的流动变慢的粘性。在时间可逆过程中,例如无摩擦摆的运动,未来和过去起着相同的作用(我们可以用未来的“+t”替换过去的“-t”);不可逆过程与可逆过程相反,它有一个时间方向。过去准备的一块放射性物质会在将来消失。由于粘性,液体的流动将会随时间变慢。
时间方向的原初作用在我们研究的宏观层次上,如化学反应或输运过程中,是很明显的。我们从会起反应的化学化合物开始。随着时间的推移,它们达到平衡,反应停止。与此相似,如果我们从一种不均匀的状态开始,扩散会将该系统引致均匀。太阳辐射就是不可逆核过程的结果。如果不考虑不计其数的决定天气和气候变化的不可逆过程,就不可能对生态圈进行描述。自然界既包括时间可逆过程,又包括时间不可逆过程,但公平地说,不可逆过程是常规,而可逆过程是例外。可逆过程对应于理想化:我们必须忽略摩擦以使摆可逆地摆动。此种理想化是成问题的,因为自然界中不存在绝对的虚空。如上所述,时间可逆过程由不因时间反演而改变的运动方程所描述,经典力学中的牛顿方程或量子力学中的薛定谔方程皆如此。然而对不可逆过程而言,我们需要一个打破时间对称性的描述。
可逆过程和不可逆过程之间的差异,是通过与所谓热力学第二定律相联系的熵的概念引入的。早在1865年熵就由克劳修斯(Rudolf Julius Clausius)所定义(熵在希腊文中就指“演化”)。按照热力学第二定律,不可逆过程产生熵。相反,可逆过程使熵保持不变。
我们将反复回到这个第二定律上来。现在,我们先回忆一下克劳修斯著名的表述:“宇宙的能量守恒。宇宙的熵增加。”熵的增加为发生在宇宙中的不可逆过程所致。克劳修斯的陈述是第一个以不可逆过程的存在为基础的宇宙演化观点的表述。爱丁顿(Arthur Stanley Eddington)把熵称作“时间之矢”。但从物理学基本定律来看,却不应当存在任何不可逆过程。因此,我们看到,我们从19世纪继承了两个相互矛盾的自然观,即以动力学定律为基础的时间可逆观点和以熵为基础的演化观点。怎样调和这些矛盾的观点呢?过了这么多年,这个难题依然与我们同在。
对维也纳物理学家玻尔兹曼来说,19世纪是达尔文的世纪。达尔文在这个世纪把生命确立为一个永无终结的进化过程的结果,从而将演化置于我们对自然的认识的中心。然而,对大多数物理学家来说,玻尔兹曼的名字如今却与和达尔文的结论完全对立的结论联系在一起:玻尔兹曼被错怪为证明了不可逆性仅仅是一种错觉。玻尔兹曼的悲剧在于,试图在物理学中取得达尔文在生物学中取得的成就——却陷于绝境。
乍看起来,19世纪的这两个巨人所用方法的相似之处是很显著的。达尔文表明,如果我们从研究群体而不是从研究个体开始,就可以理解依赖于选择压力的个体易变性如何产生漂变。对应地,玻尔兹曼认为,从个体的动力学轨道开始,我们就不能理解热力学第二定律及其所预言的熵的自发增加;我们必须从大的粒子群体开始。熵增是这些粒子间大量碰撞造成的全局漂变。
1872年,玻尔兹曼发表了著名的H定理,它包括熵的一个微观类似物H函数。H定理说明每一个瞬间都会改变粒子速度的碰撞的结果。它表明,碰撞导致粒子群体的速度分布接近于平衡态(这被称为麦克斯韦一玻尔兹曼分布)。随着粒子群体趋近平衡态,玻尔兹曼的H函数减小,且在平衡态时达到其最小值,这个最小值意味着碰撞不再改变速度的分布。所以,对玻尔兹曼而言,粒子碰撞就是导致系统平衡的机理。
玻尔兹曼和达尔文都用对群体的研究取代了对“个体”的研究,并表明细微的变化(个体的易变性或微观的碰撞)在发生了一段长时间之后会在一个集体层次上产生进化。(在后面的章节里,我们还要回到群体的作用上来。)恰如生物进化不能在个体层次上加以定义,时间流也是一个全局的性质(参见第五、第六章)。但在达尔文力图解释新物种的出现时,玻尔兹曼描述了趋向于平衡和均匀的演化。意味深长的是,这两种理论的命运呈鲜明对照。达尔文的进化论顶住猛烈的攻击而获胜,它仍然是我们认识生命的基础。相反,玻尔兹曼对不可逆性的解释却屈服于对它的批评,玻尔兹曼逐渐被迫退缩了。他不能排除“反热力学”进化的可能性,这种进化是熵减少和非均匀性自发增加(而不是被抹平)的结果。
玻尔兹曼所面临的局面确实是激动人心的。他确信,为了认识自然,我们必须包括进化的特征,并且热力学第二定律所描述的不可逆性是迈向这一方向的关键一步。然而他又是动力学优良传统的继承人,认识到这个传统阻碍了他赋予时间之矢一个微观意义。
从今天的有利观点来看,玻尔兹曼必须在他那物理学应当认识演化的信念和他对物理学传统的忠诚之间作出选择,这显得特别痛心。他的尝试以失败告终的事实在今天看来不言而喻。每个大学生都学过,轨道是时间可逆的,它允许未来和过去没有差别。正如庞加莱(Hedri Poincare)所述,靠时间可逆过程的轨道来解释不可逆性,虽然努力不计其数,但显然是一个纯粹的逻辑错误。假设我们将所有分子的速度符号都颠倒过来,于是系统进入它自己的“过去”。即使熵在速度反演之前是增加的,现在它也将会减少。这就是洛施密特(Joseph Loschmidt)的速度反演佯谬,它是玻尔兹曼不能排除反热力学行为的原因。面对严厉的批评,玻尔兹曼用一个基于我们缺乏信息的概率的解释取代了他对热力学第二定律的微观解释。
在由大量的分子(1023个或阿伏伽德罗常量数量级)形成的复杂系统中,如气体或液体,显然我们不能计算每一个分子的行为。因此,玻尔兹曼引入了一个假设,即此种系统的所有微观状态都具有相同的先验概率。差异与由温度、压强和其他参量所描述的宏观状态有关。玻尔兹曼用计算产生宏观状态的微观状态的数量来定义每一个宏观状态的概率。
玻尔兹曼可能让我们想象,例如,一个容器被分成彼此相通的两个相等的室,这个容器包含了数目众多的分子,设为N个。尽管我们不能跟踪每一个分子的轨迹,但通过测量一个宏观量,如每个室的压强,我们可以确定它所包含的分子数目。我们还可以设一个起点,即物理学家通常所称的“初态”,这里,两个室中的一个几乎是空的,我们能预期观察到什么呢?随着时间的推移,分子将向那个空室迁移。事实上,绝大多数所有可能的微观状态相当于那种每个室包含相同数目分子的宏观状况。这些状态就相当于平衡态,即两个室的压强相等。一旦达到了这种状态,分子将会继续从一个室迁移到另一个室,但平均来说,迁移到右室和迁移到左室的分子数将是相等的。撇开一些小的、短暂的涨落不谈,两个室中的分子数将随时间保持不变,平衡态将得以保持。不过,在这种论证中有一个根本的弱点,即自发的、长时期偏离平衡态并非是不可能的,纵如玻尔兹曼所言乃是“不大可能的”。
玻尔兹曼以概率为基础的解释,使我们观察的宏观特征成为我们观察到的不可逆性的原因。假如我们能够跟踪分子的个体运动,就会看到一个时间可逆的系统,这个系统中每个分子都遵从牛顿物理学定律。因为我们只能描述每个室中的分子的数目,所以,我们认为系统逐渐向平衡态演化。按照这种解释,不可逆性不是自然的基本法则,而仅仅是我们观察到的、近似的宏观特征的结果。
玻尔兹曼和达尔文都用对群体的研究取代了对“个体”的研究,并表明细微的变化(个体的易变性或微观的碰撞)在发生了一段长时间之后会在一个集体层次上产生进化。(在后面的章节里,我们还要回到群体的作用上来。)恰如生物进化不能在个体层次上加以定义,时间流也是一个全局的性质(参见第五、第六章)。但在达尔文力图解释新物种的出现时,玻尔兹曼描述了趋向于平衡和均匀的演化。意味深长的是,这两种理论的命运呈鲜明对照。达尔文的进化论顶住猛烈的攻击而获胜,它仍然是我们认识生命的基础。相反,玻尔兹曼对不可逆性的解释却屈服于对它的批评,玻尔兹曼逐渐被迫退缩了。他不能排除“反热力学”进化的可能性,这种进化是熵减少和非均匀性自发增加(而不是被抹平)的结果。
玻尔兹曼所面临的局面确实是激动人心的。他确信,为了认识自然,我们必须包括进化的特征,并且热力学第二定律所描述的不可逆性是迈向这一方向的关键一步。然而他又是动力学优良传统的继承人,认识到这个传统阻碍了他赋予时间之矢一个微观意义。
从今天的有利观点来看,玻尔兹曼必须在他那物理学应当认识演化的信念和他对物理学传统的忠诚之间作出选择,这显得特别痛心。他的尝试以失败告终的事实在今天看来不言而喻。每个大学生都学过,轨道是时间可逆的,它允许未来和过去没有差别。正如庞加莱(Hedri Poincare)所述,靠时间可逆过程的轨道来解释不可逆性,虽然努力不计其数,但显然是一个纯粹的逻辑错误。假设我们将所有分子的速度符号都颠倒过来,于是系统进入它自己的“过去”。即使熵在速度反演之前是增加的,现在它也将会减少。这就是洛施密特(Joseph Loschmidt)的速度反演佯谬,它是玻尔兹曼不能排除反热力学行为的原因。面对严厉的批评,玻尔兹曼用一个基于我们缺乏信息的概率的解释取代了他对热力学第二定律的微观解释。
在由大量的分子(1023个或阿伏伽德罗常量数量级)形成的复杂系统中,如气体或液体,显然我们不能计算每一个分子的行为。因此,玻尔兹曼引入了一个假设,即此种系统的所有微观状态都具有相同的先验概率。差异与由温度、压强和其他参量所描述的宏观状态有关。玻尔兹曼用计算产生宏观状态的微观状态的数量来定义每一个宏观状态的概率。
玻尔兹曼可能让我们想象,例如,一个容器被分成彼此相通的两个相等的室,这个容器包含了数目众多的分子,设为N个。尽管我们不能跟踪每一个分子的轨迹,但通过测量一个宏观量,如每个室的压强,我们可以确定它所包含的分子数目。我们还可以设一个起点,即物理学家通常所称的“初态”,这里,两个室中的一个几乎是空的,我们能预期观察到什么呢?随着时间的推移,分子将向那个空室迁移。事实上,绝大多数所有可能的微观状态相当于那种每个室包含相同数目分子的宏观状况。这些状态就相当于平衡态,即两个室的压强相等。一旦达到了这种状态,分子将会继续从一个室迁移到另一个室,但平均来说,迁移到右室和迁移到左室的分子数将是相等的。撇开一些小的、短暂的涨落不谈,两个室中的分子数将随时间保持不变,平衡态将得以保持。不过,在这种论证中有一个根本的弱点,即自发的、长时期偏离平衡态并非是不可能的,纵如玻尔兹曼所言乃是“不大可能的”。
玻尔兹曼以概率为基础的解释,使我们观察的宏观特征成为我们观察到的不可逆性的原因。假如我们能够跟踪分子的个体运动,就会看到一个时间可逆的系统,这个系统中每个分子都遵从牛顿物理学定律。因为我们只能描述每个室中的分子的数目,所以,我们认为系统逐渐向平衡态演化。按照这种解释,不可逆性不是自然的基本法则,而仅仅是我们观察到的、近似的宏观特征的结果。
不可逆性的这种建设性作用在非平衡导致新形式的相干那种远离平衡的情况中甚至更为显著。(在第二章,我们要回到非平衡物理学。)我们现在知道,正是通过与时间之矢相联系的不可逆过程,自然才达到其优美和复杂之至的结构,生命只有在非平衡的宇宙中才有可能出现。非平衡导出了一些概念,这些概念我们将在第二章详细介绍,如自组织和耗散结构。在《从存在到演化》一书中,基于过去数十年非平衡物理学和非平衡化学的显著发展,我们总结了以下的结论:
1.不可逆过程(与时间之矢相关)像物理学基本定律描述的可逆过程一样真实,它们并非相当于加在基本定律上的近似。
2.不可逆过程在自然中起着基本的建设性作用。
这些概念对关于动力学系统的新潮思想有什么影响呢?玻尔兹曼十分清楚,在经典动力学中根本不存在不可逆性的类似物,于是,他断言,不可逆性只能从关于我们宇宙早期阶段的假定中导出。我们可以维持我们对动力学的通常表述,但我们必须用适当的初始条件来补充它们。在这种观点看来,原初宇宙是非常有组织的,从而处于一种不大可能的状态——一种许多近著中仍然接受的看法。我们宇宙中盛行的初始条件导致许多有意义的、基本上悬而未决的难题(见第八章),但我们认为玻尔兹曼的论证不再站得住脚了。不管过去如何,目前存在着两类过程:现有动力学的应用已证明很成功的时间可逆过程(亦即在经典力学中月球的运动或在量子力学中氢原子的运动),以及过去和未来之间存在不对称性的不可逆过程(如加热情形)。我们的目标是提出一种新的物理学表述,它与任何宇宙学考虑无关地解释这些性态之间的差异。对于不稳定系统和热力学系统,这确实可以做到。我们可以克服时间可逆动力学定律与以熵为基础的自然演化观之间表面上的矛盾。但我们不要超越我们自己。
大约200年前,拉格朗日(Jossph-Louis Lagrange)以牛顿定律为基础把分析力学描述为数学的一个分支,在法国科学文献中,它常被称作“理性力学”。在这种意义上,牛顿定律确定了理性的定律并代表一种绝对普遍性真理。自从有了量子力学和相对论,我们开始知道这并不是那么回事。现在,将类似的绝对真理地位赋予量子理论的诱惑又很强烈。在《夸克和美洲豹》一书中,盖尔曼断言,“量子力学不仅仅是一个理论,它更是所有当代物理学都必须适合的框架。”真的是这样吗?我已故的朋友罗森菲尔德(Leon Rosenfeld)指出:“每一个理论都是以通过数学的理想化所表达的物理概念为基础的,它们被引进用以给出对物理现象的恰当描述。如果不知道其有效范围,没有一个物理概念是被充分定义的。”
我们将要描述的,正是物理学基本概念,诸如经典力学中的轨道或量子理论中的波函数,所需的这一“有效范围”。这些界限与我们将在下一节中简要介绍的不稳定性和混沌概念是相关的。一旦我们包括了这些概念,就得到了自然法则的新表述。这个法则不再建立于确定性定律情形下的确定性,而是建立于概率之上。而且,在这种概率表述中,时间对称性被打破了。宇宙的演化特性必然在物理学基本定律之中得到反映。记住怀特海所叙述的关于自然可理解性的思想(见第1节):我们经验中的每一个要素都必须被包括在一个由普遍概念组成的连贯系统中。以这种自然法则的重新表述为基础,我们现在就可以完成玻尔兹曼在一个多世纪前所开拓的工作。
值得注意的是,许多大数学家,如波莱尔(Emile Borel),也明白有必要克服决定论。波莱尔指出,对孤立系统(如月球-地球系统)的考察总是理想化作法,只要我们离开这一还原论观点,决定论就会垮台。”这正是我们的研究所要显示的。
III
每个人在一定程度上都熟悉稳定系统和不稳定系统的区别。例如,考虑一个摆,假设它最初处在平衡态,此时它的势能最小。若小小的扰动之后它返回平衡态(参见图1.2),这系统表示一个稳定平衡态。相反,若我们把一支铅笔用头部立起来,则最小的扰动都会使它倒下,这给我们一个不稳定平衡态的模型。
1.不可逆过程(与时间之矢相关)像物理学基本定律描述的可逆过程一样真实,它们并非相当于加在基本定律上的近似。
2.不可逆过程在自然中起着基本的建设性作用。
这些概念对关于动力学系统的新潮思想有什么影响呢?玻尔兹曼十分清楚,在经典动力学中根本不存在不可逆性的类似物,于是,他断言,不可逆性只能从关于我们宇宙早期阶段的假定中导出。我们可以维持我们对动力学的通常表述,但我们必须用适当的初始条件来补充它们。在这种观点看来,原初宇宙是非常有组织的,从而处于一种不大可能的状态——一种许多近著中仍然接受的看法。我们宇宙中盛行的初始条件导致许多有意义的、基本上悬而未决的难题(见第八章),但我们认为玻尔兹曼的论证不再站得住脚了。不管过去如何,目前存在着两类过程:现有动力学的应用已证明很成功的时间可逆过程(亦即在经典力学中月球的运动或在量子力学中氢原子的运动),以及过去和未来之间存在不对称性的不可逆过程(如加热情形)。我们的目标是提出一种新的物理学表述,它与任何宇宙学考虑无关地解释这些性态之间的差异。对于不稳定系统和热力学系统,这确实可以做到。我们可以克服时间可逆动力学定律与以熵为基础的自然演化观之间表面上的矛盾。但我们不要超越我们自己。
大约200年前,拉格朗日(Jossph-Louis Lagrange)以牛顿定律为基础把分析力学描述为数学的一个分支,在法国科学文献中,它常被称作“理性力学”。在这种意义上,牛顿定律确定了理性的定律并代表一种绝对普遍性真理。自从有了量子力学和相对论,我们开始知道这并不是那么回事。现在,将类似的绝对真理地位赋予量子理论的诱惑又很强烈。在《夸克和美洲豹》一书中,盖尔曼断言,“量子力学不仅仅是一个理论,它更是所有当代物理学都必须适合的框架。”真的是这样吗?我已故的朋友罗森菲尔德(Leon Rosenfeld)指出:“每一个理论都是以通过数学的理想化所表达的物理概念为基础的,它们被引进用以给出对物理现象的恰当描述。如果不知道其有效范围,没有一个物理概念是被充分定义的。”
我们将要描述的,正是物理学基本概念,诸如经典力学中的轨道或量子理论中的波函数,所需的这一“有效范围”。这些界限与我们将在下一节中简要介绍的不稳定性和混沌概念是相关的。一旦我们包括了这些概念,就得到了自然法则的新表述。这个法则不再建立于确定性定律情形下的确定性,而是建立于概率之上。而且,在这种概率表述中,时间对称性被打破了。宇宙的演化特性必然在物理学基本定律之中得到反映。记住怀特海所叙述的关于自然可理解性的思想(见第1节):我们经验中的每一个要素都必须被包括在一个由普遍概念组成的连贯系统中。以这种自然法则的重新表述为基础,我们现在就可以完成玻尔兹曼在一个多世纪前所开拓的工作。
值得注意的是,许多大数学家,如波莱尔(Emile Borel),也明白有必要克服决定论。波莱尔指出,对孤立系统(如月球-地球系统)的考察总是理想化作法,只要我们离开这一还原论观点,决定论就会垮台。”这正是我们的研究所要显示的。
III
每个人在一定程度上都熟悉稳定系统和不稳定系统的区别。例如,考虑一个摆,假设它最初处在平衡态,此时它的势能最小。若小小的扰动之后它返回平衡态(参见图1.2),这系统表示一个稳定平衡态。相反,若我们把一支铅笔用头部立起来,则最小的扰动都会使它倒下,这给我们一个不稳定平衡态的模型。
在稳定运动和不稳定运动之间有一个基本的差别。简言之,稳定动力学系统是初始条件的小变化产生相应小影响的系统;但对一大类动力学系统来说,初始条件的小扰动会随时间被放大。混沌系统是不稳定运动的极端例子,因为不同初始条件确认的轨道,不管多么接近,都会随时间推移指数地发散。这就叫“对初始条件的敏感性”。一个通过混沌而放大的经典例证是“蝴蝶效应”:蝴蝶在亚马孙流域扇动它的翅膀就可能影响到美国的天气。我们在后面还会看到混沌系统的一些例子(参见第三章和第四章)。
确定性混沌这一术语也已进入混沌系统的讨论。如牛顿动力学中的情形所示,运动方程确实是确定性的,即使某个特定的结局是貌似随机的。不稳定性这一重要角色的发现,导致了以前当作是一个封闭学科的经典动力学的复苏。事实上,直到最近,牛顿定律所描述的所有系统都被认为是相似的。当然,众所周知,下落石头的轨道问题比“三体问题”,如太阳、地球和木星的环绕问题,要容易解决得多。然而这一问题更多地被认为是一个单纯的计算问题。到19世纪末,庞加莱才表明事实并非如此。问题取决于动力学系统是否稳定而有根本的差异。
我们提到了混沌系统,但还有其他类型的不稳定性有待考察。让我们首先用定性的术语,在不稳定性导致动力学定律范围扩展的意义上进行描述。在经典动力学中,初始条件由位置q和速度v(或者动量p)确定。[注] 一旦这些量已知,我们就可以用牛顿定律(或任何其他的动力学等效表述)来确定轨道。我们可以在坐标和动量所形成的空间中用点(q0,p0)表示动力学状态,这就是相空间(图1.3)。除了考虑单个系统,我们也可以考虑一簇系统——“系综”,它自本世纪初爱因斯坦和吉布斯(Josiah Willard Gibbs)的先驱性工作以来被如是称呼。
[注]为简便起见,甚至我们考虑的系统由多个粒子组成时,我们仍使用一个字母。
在这里,复述一下吉布斯的《统计力学基本原理》一书著名前言中的部分内容是有益的:
我们可以想象许多性质相同的系统,这些系统在给定时刻的构造和速度不同,不仅仅是细微地不同,而且它所以不同乃是为了包含每一种可想象的构造和速度组合。我们在此提出问题,不是通过相继的构造跟踪一个特定系统,而是确定整个系统在任何给定时刻如何分布于各种可信的构造和速度之中,其时分布已形成了一段时间。……
经验上确定的热力学定律表达大量粒子系统的近似的、可能的行为,或更准确地说,它们把此种系统的力学定律表达为好似多个人,这些人没有本事把握与单个粒子相关的数量级的量,他们也不能足够多地重复其实验,以获得哪怕是最可能的结果。
吉布斯通过系综方法把群体动力学引入了物理学。系综由相空间中的点“云”来描述(参见图1.4)。这种点云由一个有简单物理解释的函数ρ(q,p,t)来描述:即在时刻t,在一个围绕着点(q,p)的相空间小区域内找到一个点的概率。轨道对应于一种特殊情形,其中函数ρ除在点(q0,p0)以外处处都为零,这种状况由ρ的一个特殊形式来描述。那些除了在一个点外,在其他各处都为零的函数叫做狄拉克函数δ(x)。函数δ(x-x0)对所有x≠x0的点都为零。因此,对零时刻的单个轨道来说,分布函数ρ的形式是ρ=δ(q-q0)δ(p-p0)。[注]以后我们还会回到δ(x)函数的特性上来。
确定性混沌这一术语也已进入混沌系统的讨论。如牛顿动力学中的情形所示,运动方程确实是确定性的,即使某个特定的结局是貌似随机的。不稳定性这一重要角色的发现,导致了以前当作是一个封闭学科的经典动力学的复苏。事实上,直到最近,牛顿定律所描述的所有系统都被认为是相似的。当然,众所周知,下落石头的轨道问题比“三体问题”,如太阳、地球和木星的环绕问题,要容易解决得多。然而这一问题更多地被认为是一个单纯的计算问题。到19世纪末,庞加莱才表明事实并非如此。问题取决于动力学系统是否稳定而有根本的差异。
我们提到了混沌系统,但还有其他类型的不稳定性有待考察。让我们首先用定性的术语,在不稳定性导致动力学定律范围扩展的意义上进行描述。在经典动力学中,初始条件由位置q和速度v(或者动量p)确定。[注] 一旦这些量已知,我们就可以用牛顿定律(或任何其他的动力学等效表述)来确定轨道。我们可以在坐标和动量所形成的空间中用点(q0,p0)表示动力学状态,这就是相空间(图1.3)。除了考虑单个系统,我们也可以考虑一簇系统——“系综”,它自本世纪初爱因斯坦和吉布斯(Josiah Willard Gibbs)的先驱性工作以来被如是称呼。
[注]为简便起见,甚至我们考虑的系统由多个粒子组成时,我们仍使用一个字母。
在这里,复述一下吉布斯的《统计力学基本原理》一书著名前言中的部分内容是有益的:
我们可以想象许多性质相同的系统,这些系统在给定时刻的构造和速度不同,不仅仅是细微地不同,而且它所以不同乃是为了包含每一种可想象的构造和速度组合。我们在此提出问题,不是通过相继的构造跟踪一个特定系统,而是确定整个系统在任何给定时刻如何分布于各种可信的构造和速度之中,其时分布已形成了一段时间。……
经验上确定的热力学定律表达大量粒子系统的近似的、可能的行为,或更准确地说,它们把此种系统的力学定律表达为好似多个人,这些人没有本事把握与单个粒子相关的数量级的量,他们也不能足够多地重复其实验,以获得哪怕是最可能的结果。
吉布斯通过系综方法把群体动力学引入了物理学。系综由相空间中的点“云”来描述(参见图1.4)。这种点云由一个有简单物理解释的函数ρ(q,p,t)来描述:即在时刻t,在一个围绕着点(q,p)的相空间小区域内找到一个点的概率。轨道对应于一种特殊情形,其中函数ρ除在点(q0,p0)以外处处都为零,这种状况由ρ的一个特殊形式来描述。那些除了在一个点外,在其他各处都为零的函数叫做狄拉克函数δ(x)。函数δ(x-x0)对所有x≠x0的点都为零。因此,对零时刻的单个轨道来说,分布函数ρ的形式是ρ=δ(q-q0)δ(p-p0)。[注]以后我们还会回到δ(x)函数的特性上来。
注]我们取x=x0时,函数δ(x-x0)向无穷大发散。所以,与连续函数x或Sinx相比,δ函数具有“反常的”特性。它被称为广义函数或广义分布(不要与概率分布ρ相混淆)。广义函数往往与检验函数中φ(x)一同使用,检验函数亦是连续函数[即 ∫dxφ(x)δ(x-x0)=φ(x0)]。还应注意,在时刻t,对于以速度p0/m运动的自由粒子,我们有概率 ρ=δ(p-p0)δ(q-q0-p0t/m), 因为动量保持不变,坐标随时间呈线性变化。这两个描述层次,“个体”层次(对应于单个轨道)和“统计”层次(对应于系综)是等价的。
但是如吉布斯所清楚阐述的,当得不到精确的初始条件时,系综的方法不过是一个方便的计算工具而已。在他们看来,概率表达的是无知,是信息不足。甚至从动力学观点来看,对个体轨道和概率分布的讨论总是被认为是等价的问题。我们可以从个体轨道出发,然后推出概率函数的演化,反之亦然。概率ρ只是对应于轨道的叠加,并不导出任何新的特性。
真的总是如此吗?这对我们不期待任何不可逆性的简单稳定系统来说的确是如此。吉布斯和爱因斯坦是对的,个体观点(就轨道而言)和统计观点(就概率而言)是等价的。这很容易证实,我们将在第五章回到这一点上来。不过,这对不稳定系统来说也是对的吗?在分子水平上涉及不可逆过程的所有理论,如玻尔兹曼的动理学理论,这些理论都涉及概率而不涉及轨道,又会怎样呢?这又是因为我们的近似,我们的粗粒化吗?那我们如何解释动理学理论对稀薄气体诸如热导率和扩散等许多性质定量预言的成功,所有这些都被实验所证实呢?
庞加莱对动理学理论的成功倍加赞许,他写道:“也许气体动理学理论会作为一种模型使用……物理学定律将有一种全新的形式,它们将具有统计的特征。”这确实是先知之言。玻尔兹曼引进概率作为经验工具,这是特别大胆的一步。100多年以后的现在,我们开始理解概率概念在我们从动力学走向热力学时如何形成。不稳定性破坏了描述的个体层次与统计层次的等价性,于是概率获得了一个内在的动力学意义。这一认识导出了一种新型物理学,即本书的主题——群体物理学。
要解释我们说的是什么含义,考虑一个简化的混沌例子。假设在如图1.4所示的相空间内,我们有两种记为+或-的运动(亦即运动“上”域“下”),这样我们就有两种用图1.5和图1.6表示的情形。在图1.5中,相空间里有两个不同的区域,一个对应于运动-,另一个对应于运动+。若我们不管靠近边界的区域,则每一个`- 被- 包围,每一个+ 被+ 包围,这对应于稳定系统。初始条件的小变化不改变结果。
相反,在图1.6中,每一个+ 被- 包围,反之亦然。初始条件的微小变化被放大,故这个系统是不稳定的。这种不稳定性的一个首要结果是,现在轨道变得理想化了。我们不再能准备单一轨道,因为这意味着无限的精度。对稳定系统而言,这没有什么意义,但对于具有对初始条件敏感性的不稳定系统,我们只能给出包括多种运动形式的概率分布。这种困难仅仅是一个操作困难吗?是的,如果我们考虑轨道现在变成不可计算的话。但还有更多的难题:概率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。我们将在第四章看到,这具有根本性的结论。在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系综的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性实实在在地被打破了。对于不可约概率分布ρ,我们得到新的解,因为它们不适用于单个轨道。混沌定律不得不在统计层次上进行表述,这就是我们在前面一节中谈到不能以轨道来表达的动力学的推广的含义。这就引出了一种我们在过去从未遇到过的情形。初始条件不再是相空间中的点,而是由ρ在初始时刻t=o时所描述的某个区域。因此,我们有一个非局域描述。轨道依然存在,但它们是随机的概率过程的结局。不论如何精确地配合我们的初始条件,我们都得到不同的轨道。而且,我们将看到,时间对称性被打破了,因为过去和未来在统计表述中扮演着不同的角色。当然,对稳定系统而言,我们通过确定性轨道回到通常的描述。
但是如吉布斯所清楚阐述的,当得不到精确的初始条件时,系综的方法不过是一个方便的计算工具而已。在他们看来,概率表达的是无知,是信息不足。甚至从动力学观点来看,对个体轨道和概率分布的讨论总是被认为是等价的问题。我们可以从个体轨道出发,然后推出概率函数的演化,反之亦然。概率ρ只是对应于轨道的叠加,并不导出任何新的特性。
真的总是如此吗?这对我们不期待任何不可逆性的简单稳定系统来说的确是如此。吉布斯和爱因斯坦是对的,个体观点(就轨道而言)和统计观点(就概率而言)是等价的。这很容易证实,我们将在第五章回到这一点上来。不过,这对不稳定系统来说也是对的吗?在分子水平上涉及不可逆过程的所有理论,如玻尔兹曼的动理学理论,这些理论都涉及概率而不涉及轨道,又会怎样呢?这又是因为我们的近似,我们的粗粒化吗?那我们如何解释动理学理论对稀薄气体诸如热导率和扩散等许多性质定量预言的成功,所有这些都被实验所证实呢?
庞加莱对动理学理论的成功倍加赞许,他写道:“也许气体动理学理论会作为一种模型使用……物理学定律将有一种全新的形式,它们将具有统计的特征。”这确实是先知之言。玻尔兹曼引进概率作为经验工具,这是特别大胆的一步。100多年以后的现在,我们开始理解概率概念在我们从动力学走向热力学时如何形成。不稳定性破坏了描述的个体层次与统计层次的等价性,于是概率获得了一个内在的动力学意义。这一认识导出了一种新型物理学,即本书的主题——群体物理学。
要解释我们说的是什么含义,考虑一个简化的混沌例子。假设在如图1.4所示的相空间内,我们有两种记为+或-的运动(亦即运动“上”域“下”),这样我们就有两种用图1.5和图1.6表示的情形。在图1.5中,相空间里有两个不同的区域,一个对应于运动-,另一个对应于运动+。若我们不管靠近边界的区域,则每一个`- 被- 包围,每一个+ 被+ 包围,这对应于稳定系统。初始条件的小变化不改变结果。
相反,在图1.6中,每一个+ 被- 包围,反之亦然。初始条件的微小变化被放大,故这个系统是不稳定的。这种不稳定性的一个首要结果是,现在轨道变得理想化了。我们不再能准备单一轨道,因为这意味着无限的精度。对稳定系统而言,这没有什么意义,但对于具有对初始条件敏感性的不稳定系统,我们只能给出包括多种运动形式的概率分布。这种困难仅仅是一个操作困难吗?是的,如果我们考虑轨道现在变成不可计算的话。但还有更多的难题:概率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。我们将在第四章看到,这具有根本性的结论。在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系综的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性实实在在地被打破了。对于不可约概率分布ρ,我们得到新的解,因为它们不适用于单个轨道。混沌定律不得不在统计层次上进行表述,这就是我们在前面一节中谈到不能以轨道来表达的动力学的推广的含义。这就引出了一种我们在过去从未遇到过的情形。初始条件不再是相空间中的点,而是由ρ在初始时刻t=o时所描述的某个区域。因此,我们有一个非局域描述。轨道依然存在,但它们是随机的概率过程的结局。不论如何精确地配合我们的初始条件,我们都得到不同的轨道。而且,我们将看到,时间对称性被打破了,因为过去和未来在统计表述中扮演着不同的角色。当然,对稳定系统而言,我们通过确定性轨道回到通常的描述。
为什么要把那么多时间花在给自然法则一个包括不可逆性和概率的推广上?其中的一个原因是思想意识原因——意欲在我们对自然的描述中实现一个准神灵的观点。然而,这里仍然存在一个专门的数学难题。我们的工作基于一个在最近几十年才达到前沿的数学领域——泛函分析——的新进展。我们将看到,我们的表述需要一个扩展的泛函空间。这个新的数学领域目前在认识自然法则中扮演着十分重要的角色,它使用被芒德布罗(Benoit Mandelbrot)称为分形的广义函数。”我们需要一种“神灵”观点来保留确定论思想。但没有任何人的测量,没有任何理论预言能以无限精度给我们初始条件。
考虑拉普拉斯妖在确定性混沌的世界里变成什么,是有意义的。除非他以无限精度知道初始条件,否则他不再能预测未来。只有那样,它才能继续使用轨道描述。但有一种更强大的不稳定性,无论初始描述的精度如何,它都会使轨道破坏。这种形式的不稳定性极其重要,因为它既适用于经典力学又适用于量子力学。
我们的故事确实始于19世纪末庞加莱的工作。按照庞加莱,动力学系统由其粒子的动能加上粒子相互作用产生的势能来描述。一个简单的例子是自由的无相互作用的粒子。在这里没有势能,而且轨道的计算是平凡的,这样的系统被定义为可积的。庞加莱问,是不是所有的系统都可积?我们能否选择适当的变量来消去势能?通过显示这通常是不可能的,他证明了动力学系统基本上都是不可积的。
在此有必要稍加停顿,仔细思考一下庞加莱的结论。假设庞加莱证明所有的动力学系统都是可积的,这将意味着所有的动力学运动与自由无相互作用粒子是同构的。这将没有时间之矢的立足之地,因而也就没有自组织和生命本身的立足之地。可积系统描述的是一个静态的、确定性的世界。庞加莱不仅证实了不可积性,而且指明了造成不可积性的原因,即自由度之间共振的存在。我们将在第五章更详细地看到,每一种运动形式都对应于一个频率,这方面最简单的例子是给走质点和中心点的谐振子。质点受到的力与它离开中心点的距离成正比,如果我们将质点从中心拉开,它会以一个确定的频率振动。正是通过这些频率,我们得到共振这个对庞加莱定理十分重要的概念。
我们都多多少少熟悉共振的概念,当我们迫使弹簧离开其平衡位置,它将以一个特征频率振动。现在给弹簧施加一个外力,这一外力具有可变的频率。当弹簧的频率与外力的频率二者有一个简单的数字比率(即其中一个频率是另一个频率的数倍)时,弹簧的振幅将急剧加大。当我们在一件乐器上演奏一个音符时会发生同样的现象。我们会听见谐音。共振“耦合”声音。
现在考虑由两个频率所刻画的系统。根据定义,只要n1 ω1+n2 ω2=0,其中nl和n2都是非零整数,我们就得到了共振。这表明ω1/ω2=-n2/n1,即频率之比为有理数。庞加莱已表明,共振在动力学中带来具有“危险的”分母1/(n1ω1+n2ω2)的项,只要有共振(即相空间中的点满足n1ω1+n2ω2=0),这些项就会发散。其结果是,我们计算轨道时会碰到障碍。
这就是庞加莱不可积性的来源。18世纪的天文学家就已知道“小分母问题”,但庞加莱定理表明,这一困难是绝大多数动力学系统所共有的。庞加莱将其称为“动力学的普遍问题”。然而,在相当长的时期里,庞加莱结果的重要性被忽视了。
玻恩写道:“如果自然界以多体问题的解析困难为后盾,使自己强大起来以抵御知识进步,是十分不同寻常的。”很难相信一种技术上的困难(由于共振而导致的发散)能改变动力学的概念结构。我们现在从一个不同的角度来看这一问题。对我们来讲,庞加莱的发散是一个良机。事实上,我们现在可以超出庞加莱的消极陈述,并表明不可积性和混沌一样为动力学定律的新统计表述铺平了道路。由于科尔莫戈罗夫(Andrei N.Kolmogorov)及随后阿诺德(Vladimir IgorevichArnold)、莫泽(Jurgen Kurt Moser)的工作(所谓 KAM理论),人们终于理解了不可积性,这在庞加莱之后又花了60年的时间。不可积性不是玻恩所言自然界抵制知识进步的令人沮丧的表现,而是动力学的新起点。
考虑拉普拉斯妖在确定性混沌的世界里变成什么,是有意义的。除非他以无限精度知道初始条件,否则他不再能预测未来。只有那样,它才能继续使用轨道描述。但有一种更强大的不稳定性,无论初始描述的精度如何,它都会使轨道破坏。这种形式的不稳定性极其重要,因为它既适用于经典力学又适用于量子力学。
我们的故事确实始于19世纪末庞加莱的工作。按照庞加莱,动力学系统由其粒子的动能加上粒子相互作用产生的势能来描述。一个简单的例子是自由的无相互作用的粒子。在这里没有势能,而且轨道的计算是平凡的,这样的系统被定义为可积的。庞加莱问,是不是所有的系统都可积?我们能否选择适当的变量来消去势能?通过显示这通常是不可能的,他证明了动力学系统基本上都是不可积的。
在此有必要稍加停顿,仔细思考一下庞加莱的结论。假设庞加莱证明所有的动力学系统都是可积的,这将意味着所有的动力学运动与自由无相互作用粒子是同构的。这将没有时间之矢的立足之地,因而也就没有自组织和生命本身的立足之地。可积系统描述的是一个静态的、确定性的世界。庞加莱不仅证实了不可积性,而且指明了造成不可积性的原因,即自由度之间共振的存在。我们将在第五章更详细地看到,每一种运动形式都对应于一个频率,这方面最简单的例子是给走质点和中心点的谐振子。质点受到的力与它离开中心点的距离成正比,如果我们将质点从中心拉开,它会以一个确定的频率振动。正是通过这些频率,我们得到共振这个对庞加莱定理十分重要的概念。
我们都多多少少熟悉共振的概念,当我们迫使弹簧离开其平衡位置,它将以一个特征频率振动。现在给弹簧施加一个外力,这一外力具有可变的频率。当弹簧的频率与外力的频率二者有一个简单的数字比率(即其中一个频率是另一个频率的数倍)时,弹簧的振幅将急剧加大。当我们在一件乐器上演奏一个音符时会发生同样的现象。我们会听见谐音。共振“耦合”声音。
现在考虑由两个频率所刻画的系统。根据定义,只要n1 ω1+n2 ω2=0,其中nl和n2都是非零整数,我们就得到了共振。这表明ω1/ω2=-n2/n1,即频率之比为有理数。庞加莱已表明,共振在动力学中带来具有“危险的”分母1/(n1ω1+n2ω2)的项,只要有共振(即相空间中的点满足n1ω1+n2ω2=0),这些项就会发散。其结果是,我们计算轨道时会碰到障碍。
这就是庞加莱不可积性的来源。18世纪的天文学家就已知道“小分母问题”,但庞加莱定理表明,这一困难是绝大多数动力学系统所共有的。庞加莱将其称为“动力学的普遍问题”。然而,在相当长的时期里,庞加莱结果的重要性被忽视了。
玻恩写道:“如果自然界以多体问题的解析困难为后盾,使自己强大起来以抵御知识进步,是十分不同寻常的。”很难相信一种技术上的困难(由于共振而导致的发散)能改变动力学的概念结构。我们现在从一个不同的角度来看这一问题。对我们来讲,庞加莱的发散是一个良机。事实上,我们现在可以超出庞加莱的消极陈述,并表明不可积性和混沌一样为动力学定律的新统计表述铺平了道路。由于科尔莫戈罗夫(Andrei N.Kolmogorov)及随后阿诺德(Vladimir IgorevichArnold)、莫泽(Jurgen Kurt Moser)的工作(所谓 KAM理论),人们终于理解了不可积性,这在庞加莱之后又花了60年的时间。不可积性不是玻恩所言自然界抵制知识进步的令人沮丧的表现,而是动力学的新起点。
KAM理论处理共振对轨道的影响。频率。通常依赖于动变量如坐标和动量的值,它们在相空间不同点的取值不同。其结果是,有些点由共振来刻画,而另一些点则不然。对于混沌来讲,这又将使其相空间达到特别复杂的程度。按照KAM理论,我们观察到两类轨道:“正经的”确定性的轨道,以及与共振相关联的在相空间无规律地漫游的“散漫的”轨道。
这一理论另一个重要结果是,当我们增加能量值时,随机性占据的区域会随之扩大。对于某个临界能量值,会出现混沌:随着时间的推移,我们看到相邻轨道呈指数发散。而且,对于充分发展的混沌来说,由轨道产生的点云会导致扩散,但扩散与我们将来达到均匀性的方法相关联。它是一个产生熵的不可逆过程(见第1节)。虽然我们从经典动力学出发,我们现在却观察到时间对称性的破缺。这如何可能,正是我们为了克服时间佯谬而必须解决的主要问题。
庞加莱共振在物理学中扮演着基本角色。光的发射或吸收是共振所致,因为它是使相互作用的粒子系统达到平衡的途径。相互作用的场也导致共振。事实上,很难在经典物理学或量子物理学中找到一个共振在其中没有扮演显著角色的重要问题。但是,我们如何克服与共振相关联的发散呢?对此已取得了一些重要进展。如在第III节中,我们必须区分个体层次(轨道)和统计层次(由概率分布ρ描述的系综)。在个体层次上我们有发散,但这些发散在统计层次上可以得到解决(参见第五、第六章),共振在统计层次上产生与共鸣导致的伴声大致类似的事件耦合。其重要特点是,出现了与轨道描述不相容的、新的非牛顿项。这并不奇怪。共振不是局域事件,因为它们并非在给定地点或给定时刻发生。共振蕴涵着非局域描述,所以不能包含在与牛顿动力学相关联的轨道描述之中。我们将要看到,共振导致了扩散运动。当我们从相空间的一个点P0出发,我们不再能肯定地预言经过一段时间。之后其新位置Pt。简言之,初始点 P0以明确的概率产生许多可能的点P1,P2,P3。
在图1.7里,区域D中的每个点有一个在时刻。出现的非零概率或明确的转移概率。这种情况类似于“无规行走”或“布朗运动”的情形。在最简单的情况里,这一条件可以用粒子在一维点阵中的运动来说明,点阵以规则的时间间隔作一步转移(参见图1.8)。
在每一步,质点往左去和往右去的概率均为1/2。在每一步,未来都是不确定的。从一开始,就不可能谈到轨道。从数学上来讲,布朗运动由扩散型方程(称为福克尔-普朗克(Fokker-Planck)方程)描述。扩散是有时间方向的。如果我们从位于同一源的点云出发,随着时间的推移,这个点云将分散,一些粒子出现在远离源头的地方,另一些则出现在离源头较近的地方。令人瞩目的是,从经典动力学出发,共振精确地导出了扩散项,也就是说,共振甚至在经典力学框架中引入了不确定性,并打破了时间对称性。
对于可积系统而言,当这些扩散因素不存在时,我们就会回到轨道描述,但是总体上,动力学定律必须在概率分布层次上进行表述。因而,基本问题是:在什么情况下,我们可以预期成为可观察量的扩散项?当做到这一点时,概率变成自然的基本属性。这是有关确定牛顿动力学有效范围的问题(或有关我们下一节将要考虑的量子理论的有效范围问题),它不啻是一次观念上的革命。几个世纪以来,轨道被看作是经典物理学基本的、原始的客体。相反,我们现在则把轨道看作是共振系统的有效范围,在第五章我们将回到这个问题上来,在第六章针对量子力学讨论一个平行的问题。然而,此时我们先给出一些暂时的回答。对于瞬时相互作用(一束粒子与障碍物碰撞并逸出),扩散项可以被忽略;但对于持续相互作用(一束稳定的粒子流落在障碍物上),扩散项就起支配作用了。在计算机模拟时,如同在真实世界中一样,我们可以再现这两种情况,因而可以检验我们的预言。结果毫不含糊地表明,对持续相互作用出现扩散项,于是导致牛顿力学描述以及正统的量子力学描述的失败。在这两种情况下,与在确定性混沌中一样,我们都得到“不可约的”概率描述。
但还有另一个更值得注意的情况。宏观系统通常用热力学极限来定义,按照热力学极限,无论粒子数N还是体积V都变大。我们将在第五章和第六章研究这一极限。在与这一极限相联系的现象的观测中,物质的新属性变得显而易见。
如果我们仅仅考虑少量粒子,就不能说它们是否形成液体或气体。物质的状态和相变最终由热力学极限所定义。相变的存在表明,当我们采取还原论者态度时必须谨慎行事。相变对应于突现属性。它们在单个粒子的层次上毫无意义,只有在群体层次才有意义。这种争论在某种程度上与基于庞加莱共振的争论类似。持续相互作用意味着我们不能将系统的一部分取出来孤立地加以考虑。正是在这种全局层次,在群体层次上,过去和未来之间的对称性被打破了,科学可以承认时间流。这解决了一个长期存在的难题。实际上,在宏观物理学中,不可逆性和概率是最明显不过的。
这一理论另一个重要结果是,当我们增加能量值时,随机性占据的区域会随之扩大。对于某个临界能量值,会出现混沌:随着时间的推移,我们看到相邻轨道呈指数发散。而且,对于充分发展的混沌来说,由轨道产生的点云会导致扩散,但扩散与我们将来达到均匀性的方法相关联。它是一个产生熵的不可逆过程(见第1节)。虽然我们从经典动力学出发,我们现在却观察到时间对称性的破缺。这如何可能,正是我们为了克服时间佯谬而必须解决的主要问题。
庞加莱共振在物理学中扮演着基本角色。光的发射或吸收是共振所致,因为它是使相互作用的粒子系统达到平衡的途径。相互作用的场也导致共振。事实上,很难在经典物理学或量子物理学中找到一个共振在其中没有扮演显著角色的重要问题。但是,我们如何克服与共振相关联的发散呢?对此已取得了一些重要进展。如在第III节中,我们必须区分个体层次(轨道)和统计层次(由概率分布ρ描述的系综)。在个体层次上我们有发散,但这些发散在统计层次上可以得到解决(参见第五、第六章),共振在统计层次上产生与共鸣导致的伴声大致类似的事件耦合。其重要特点是,出现了与轨道描述不相容的、新的非牛顿项。这并不奇怪。共振不是局域事件,因为它们并非在给定地点或给定时刻发生。共振蕴涵着非局域描述,所以不能包含在与牛顿动力学相关联的轨道描述之中。我们将要看到,共振导致了扩散运动。当我们从相空间的一个点P0出发,我们不再能肯定地预言经过一段时间。之后其新位置Pt。简言之,初始点 P0以明确的概率产生许多可能的点P1,P2,P3。
在图1.7里,区域D中的每个点有一个在时刻。出现的非零概率或明确的转移概率。这种情况类似于“无规行走”或“布朗运动”的情形。在最简单的情况里,这一条件可以用粒子在一维点阵中的运动来说明,点阵以规则的时间间隔作一步转移(参见图1.8)。
在每一步,质点往左去和往右去的概率均为1/2。在每一步,未来都是不确定的。从一开始,就不可能谈到轨道。从数学上来讲,布朗运动由扩散型方程(称为福克尔-普朗克(Fokker-Planck)方程)描述。扩散是有时间方向的。如果我们从位于同一源的点云出发,随着时间的推移,这个点云将分散,一些粒子出现在远离源头的地方,另一些则出现在离源头较近的地方。令人瞩目的是,从经典动力学出发,共振精确地导出了扩散项,也就是说,共振甚至在经典力学框架中引入了不确定性,并打破了时间对称性。
对于可积系统而言,当这些扩散因素不存在时,我们就会回到轨道描述,但是总体上,动力学定律必须在概率分布层次上进行表述。因而,基本问题是:在什么情况下,我们可以预期成为可观察量的扩散项?当做到这一点时,概率变成自然的基本属性。这是有关确定牛顿动力学有效范围的问题(或有关我们下一节将要考虑的量子理论的有效范围问题),它不啻是一次观念上的革命。几个世纪以来,轨道被看作是经典物理学基本的、原始的客体。相反,我们现在则把轨道看作是共振系统的有效范围,在第五章我们将回到这个问题上来,在第六章针对量子力学讨论一个平行的问题。然而,此时我们先给出一些暂时的回答。对于瞬时相互作用(一束粒子与障碍物碰撞并逸出),扩散项可以被忽略;但对于持续相互作用(一束稳定的粒子流落在障碍物上),扩散项就起支配作用了。在计算机模拟时,如同在真实世界中一样,我们可以再现这两种情况,因而可以检验我们的预言。结果毫不含糊地表明,对持续相互作用出现扩散项,于是导致牛顿力学描述以及正统的量子力学描述的失败。在这两种情况下,与在确定性混沌中一样,我们都得到“不可约的”概率描述。
但还有另一个更值得注意的情况。宏观系统通常用热力学极限来定义,按照热力学极限,无论粒子数N还是体积V都变大。我们将在第五章和第六章研究这一极限。在与这一极限相联系的现象的观测中,物质的新属性变得显而易见。
如果我们仅仅考虑少量粒子,就不能说它们是否形成液体或气体。物质的状态和相变最终由热力学极限所定义。相变的存在表明,当我们采取还原论者态度时必须谨慎行事。相变对应于突现属性。它们在单个粒子的层次上毫无意义,只有在群体层次才有意义。这种争论在某种程度上与基于庞加莱共振的争论类似。持续相互作用意味着我们不能将系统的一部分取出来孤立地加以考虑。正是在这种全局层次,在群体层次上,过去和未来之间的对称性被打破了,科学可以承认时间流。这解决了一个长期存在的难题。实际上,在宏观物理学中,不可逆性和概率是最明显不过的。
热力学适用于不可积系统。这意味着,我们不能用轨道来解决动力学难题,但我们能用概率解决它。因此,如同确定性混沌情形那样,经典力学的新统计表述导致数学框架的拓展。这在某种程度上不由得让我们回想起广义相对论。像爱因斯坦所表明的那样,为了包含引力,我们必须从欧几里得几何转向黎曼几何。在泛函分析中,所谓希尔伯特空间扮演着特殊的角色,它将欧几里得几何扩展到包含无穷维数“函数空间”的情形。传统上,量子力学和统计力学都应用了希尔伯特空间。为了得到对不稳定系统和热力学极限有效的新表述,我们必须从希尔伯特空间转向更普遍的泛函空间。这一观点将在第四到第六章中详加解释。
自本世纪初以来,我们已经习惯于在我们面对微观客体,如原子和基本粒子时,或者当我们处理天体物理维度时,产生经典力学有待扩展的想法。而不稳定性同样要求扩展经典力学则很出乎意料。我们现在将转入的量子力学情形十分类似。共振所致的不稳定性在改变量予理论的表述中同样扮演着一种基本角色。
IV
在量子力学中,我们碰到了一个很奇怪的情况。众所周知,这一理论在它的所有预言方面都取得了引人注目的成功。然而,量子力学的表述完成已有60多年的历史,但有关其含义和范围的讨论依然热烈如初,这在科学史中是很独特的。尽管它取得了许多成功,很多物理学家仍有一种不安的感觉。费恩曼(Richard Feynman)就一度认为无人真正“理解”量子理论。
这儿,基本量是波函数Ψ,它在某种程度上起轨道在经典力学中所起的作用。实际上,量子理论的基本方程(薛定谔方程)描述波函数的时间演化。它将给定初始时刻t0的波函数Ψ(t0)转换为t时刻的波函数Ψ(t),这就如同在经典力学中,轨道从一个相点导出另一个相点
自本世纪初以来,我们已经习惯于在我们面对微观客体,如原子和基本粒子时,或者当我们处理天体物理维度时,产生经典力学有待扩展的想法。而不稳定性同样要求扩展经典力学则很出乎意料。我们现在将转入的量子力学情形十分类似。共振所致的不稳定性在改变量予理论的表述中同样扮演着一种基本角色。
IV
在量子力学中,我们碰到了一个很奇怪的情况。众所周知,这一理论在它的所有预言方面都取得了引人注目的成功。然而,量子力学的表述完成已有60多年的历史,但有关其含义和范围的讨论依然热烈如初,这在科学史中是很独特的。尽管它取得了许多成功,很多物理学家仍有一种不安的感觉。费恩曼(Richard Feynman)就一度认为无人真正“理解”量子理论。
这儿,基本量是波函数Ψ,它在某种程度上起轨道在经典力学中所起的作用。实际上,量子理论的基本方程(薛定谔方程)描述波函数的时间演化。它将给定初始时刻t0的波函数Ψ(t0)转换为t时刻的波函数Ψ(t),这就如同在经典力学中,轨道从一个相点导出另一个相点
和牛顿方程一样,薛定愕方程是确定性的,且是时间可逆的。再次如同在经典动力学中一样,在量子力学的动力学描述和与熵相关联的演化描述之间存在着一条鸿沟。波函数Ψ的物理解释是它对应着概率幅。这表明|Ψ|2=ΨΨ*(Ψ既有实部也有虚部,Ψ*是Ψ的复共轭)是概率,我们再次用ρ来标记。还存在更普遍的概率形式,它对应于通过各种波函数的叠加而得到的系综。与从单个波函数得到的纯粹倩形相对,它们被称为混合情形。
量子理论的基本假设是:正如经典力学中的每一个动力学问题通常与轨道动力学相联系一样,每一个动力学问题可以在概率幅层次上加以解决。但奇怪的是,为了把明确定义的属性赋给物质,我们不得不超出概率幅,我们需要概率本身。为了理解这一困难,我们考虑一个简单的例子。假设能量可以取两个值EI和EZ,相应的波函数为u1和u2。现在考虑线性叠加Ψ=c1u1+c2u2。这样,波函数在两个层次上“参与”,系统既不在层次1也不在层次2,而是处于一种居间态。我们现在测量与Ψ相关的能量。按照量子力学,我们得到与概率幅的平方|c1|2和|c2|2给出的概率相联系的E1或E2。
我们最初从单个波函数Ψ开始,但却仍然以两个波函数u1和u2的混合物结束。这通常称为波函数的“归约”或“坍缩”。我们必须从由波函数Ψ所描述的潜在性转向我们可以测量的实在性。在量子理论的传统语言中,我们是从纯粹状态(波函数)转向系综,即混合物。但这如何可能呢?如前所述,薛定谔方程将一个波函数变换为另一个波函数,而不是变换为系综,这一直被称为量子佯谬。有人认为,从潜在性向实在性的转变是我们的测量造成的。这是本章第1节引述的温伯格的一段话以及相当多的教科书中所表达的观点。它是与经典力学中的时间佯谬提供的解释同样类型的解释。亦是在那种情形里,很难理解人的行为,譬如观察,怎么就能造成从潜在性向实在性的转变。倘若没有人类的存在,宇宙的演化会不一样吗?戴维斯(Pani C.Davies)在《新物理学》一书的导论中写道:
最低限度,量子力学提供了一个非常成功的方法来预言对微观系统的观察结果,但当我们问在进行观察时实际会发生什么,我们得到一派胡言!打破这一佯谬,所 做的努力既有埃弗里特(Hugh Everett)的离奇的多世界解释,也有冯·诺伊曼(JOIm von Ne。)和维格纳(Eugene Wigner)乞灵于观察者意识的神秘思想。经过半个世纪的争论,这一量子观测争论仍旧热烈如初。关于至小和至大的物理学问题是难以克服的,但这一前沿——意识和物质的界面——可能会成为“新物理学”最富挑战性的遗产。
这个“意识和物质的界面”也处于时间佯谬的核心。如果仅仅由于我们人的意识干预了一个由时间对称定律支配的世界,时间之矢才存在,那么知识的获取就会因为任何测量本身已蕴涵着一个不可逆过程而变得自相矛盾。如果我们想了解关于一个时间可逆的客体的任何知识,无论是在仪器水平还是在我们自己的感官机理水平,我们都无法回避测量的不可逆过程。因此,在经典物理学中,当我们问如何依靠基本的时间可逆定律去理解“观察”,正如戴维斯所说的那样,我们得到“一派胡言”,但是在经典物理学中,不可逆性的这种入侵却被看作是一个次要问题。经典动力学的大成功对其客观属性来说是毋庸置疑的,而量子理论中的情况则截然不同。在此,量子理论的结构明确表明,在我们对自然的基本描述中必需包含测量。因此,看来我们拥有一个不可约的二元性:一方面,是时间可逆的薛定谔方程;另一方面则是波函数的坍缩。
量子理论的基本假设是:正如经典力学中的每一个动力学问题通常与轨道动力学相联系一样,每一个动力学问题可以在概率幅层次上加以解决。但奇怪的是,为了把明确定义的属性赋给物质,我们不得不超出概率幅,我们需要概率本身。为了理解这一困难,我们考虑一个简单的例子。假设能量可以取两个值EI和EZ,相应的波函数为u1和u2。现在考虑线性叠加Ψ=c1u1+c2u2。这样,波函数在两个层次上“参与”,系统既不在层次1也不在层次2,而是处于一种居间态。我们现在测量与Ψ相关的能量。按照量子力学,我们得到与概率幅的平方|c1|2和|c2|2给出的概率相联系的E1或E2。
我们最初从单个波函数Ψ开始,但却仍然以两个波函数u1和u2的混合物结束。这通常称为波函数的“归约”或“坍缩”。我们必须从由波函数Ψ所描述的潜在性转向我们可以测量的实在性。在量子理论的传统语言中,我们是从纯粹状态(波函数)转向系综,即混合物。但这如何可能呢?如前所述,薛定谔方程将一个波函数变换为另一个波函数,而不是变换为系综,这一直被称为量子佯谬。有人认为,从潜在性向实在性的转变是我们的测量造成的。这是本章第1节引述的温伯格的一段话以及相当多的教科书中所表达的观点。它是与经典力学中的时间佯谬提供的解释同样类型的解释。亦是在那种情形里,很难理解人的行为,譬如观察,怎么就能造成从潜在性向实在性的转变。倘若没有人类的存在,宇宙的演化会不一样吗?戴维斯(Pani C.Davies)在《新物理学》一书的导论中写道:
最低限度,量子力学提供了一个非常成功的方法来预言对微观系统的观察结果,但当我们问在进行观察时实际会发生什么,我们得到一派胡言!打破这一佯谬,所 做的努力既有埃弗里特(Hugh Everett)的离奇的多世界解释,也有冯·诺伊曼(JOIm von Ne。)和维格纳(Eugene Wigner)乞灵于观察者意识的神秘思想。经过半个世纪的争论,这一量子观测争论仍旧热烈如初。关于至小和至大的物理学问题是难以克服的,但这一前沿——意识和物质的界面——可能会成为“新物理学”最富挑战性的遗产。
这个“意识和物质的界面”也处于时间佯谬的核心。如果仅仅由于我们人的意识干预了一个由时间对称定律支配的世界,时间之矢才存在,那么知识的获取就会因为任何测量本身已蕴涵着一个不可逆过程而变得自相矛盾。如果我们想了解关于一个时间可逆的客体的任何知识,无论是在仪器水平还是在我们自己的感官机理水平,我们都无法回避测量的不可逆过程。因此,在经典物理学中,当我们问如何依靠基本的时间可逆定律去理解“观察”,正如戴维斯所说的那样,我们得到“一派胡言”,但是在经典物理学中,不可逆性的这种入侵却被看作是一个次要问题。经典动力学的大成功对其客观属性来说是毋庸置疑的,而量子理论中的情况则截然不同。在此,量子理论的结构明确表明,在我们对自然的基本描述中必需包含测量。因此,看来我们拥有一个不可约的二元性:一方面,是时间可逆的薛定谔方程;另一方面则是波函数的坍缩。
所有这些阐明量子理论概念基础的尝试特别使人不满的是,它们没有作出任何可以实际检验的新预言。
我们自己的结论与这一领域中的其他许多专家,如美国的希莫尼(Abner Shimony)和法国的德斯帕格纳特(Bernardd’Espagnat)的结论不谋而合。在他们看来,必须作出一些根本的革新,这些革新将保留量子力学所有的成就,但应消除与量子理论二元结构相关联的困难。请注意测量难题不是孤立的。正如罗森菲尔德强调的那样,测量与不可逆性相联系。但是在量子力学中,不管它们是否与测量联系在一起,都没有不可逆过程的位置。冯·诺伊曼、泡利和菲尔在几十年前就已确立,(在遍历理论的框架里)难以将不可逆性引入量子理论。像在经典力学中那样,他们力图通过粗粒化来解决这个难题,但他们的努力不成功。这可能是冯·诺伊曼最终采纳二元表述的原因:一边是薛定谔方程,另一边是波函数坍缩。只要坍缩不用动力学术语来描述,这就无法令人满意。这就是我们自己理论所取得的成就。不稳定性再次扮演着核心角色。然而,受指数发散轨道影响的确定性混沌在此不适用。在量子力学中,没有什么轨道。因此,我们必须通过庞加莱共振来考察不稳定性。
我们可以把庞加莱共振结合进统计描述,并用波函数导出在量子力学范围之外的扩散项。统计描述再次基于概率。(在量子力学中也称为密度矩阵,参见第六章)的层次上,不再基于波函数之上。通过庞加莱共振,我们不依靠任何非动力学假设,就实现从概率幅向概率本身的转变。
我们自己的结论与这一领域中的其他许多专家,如美国的希莫尼(Abner Shimony)和法国的德斯帕格纳特(Bernardd’Espagnat)的结论不谋而合。在他们看来,必须作出一些根本的革新,这些革新将保留量子力学所有的成就,但应消除与量子理论二元结构相关联的困难。请注意测量难题不是孤立的。正如罗森菲尔德强调的那样,测量与不可逆性相联系。但是在量子力学中,不管它们是否与测量联系在一起,都没有不可逆过程的位置。冯·诺伊曼、泡利和菲尔在几十年前就已确立,(在遍历理论的框架里)难以将不可逆性引入量子理论。像在经典力学中那样,他们力图通过粗粒化来解决这个难题,但他们的努力不成功。这可能是冯·诺伊曼最终采纳二元表述的原因:一边是薛定谔方程,另一边是波函数坍缩。只要坍缩不用动力学术语来描述,这就无法令人满意。这就是我们自己理论所取得的成就。不稳定性再次扮演着核心角色。然而,受指数发散轨道影响的确定性混沌在此不适用。在量子力学中,没有什么轨道。因此,我们必须通过庞加莱共振来考察不稳定性。
我们可以把庞加莱共振结合进统计描述,并用波函数导出在量子力学范围之外的扩散项。统计描述再次基于概率。(在量子力学中也称为密度矩阵,参见第六章)的层次上,不再基于波函数之上。通过庞加莱共振,我们不依靠任何非动力学假设,就实现从概率幅向概率本身的转变。
如同在经典动力学中一样,基本问题是:这些扩散项何时是可观察量?传统的量子理论的局限性是什么?回答与经典动力学中的回答相似(参见第III节)。简单说来,正是在持续相互作用中扩散项成为支配项(参见第七章)。像在经典力学中一样,这个预言已通过数值模拟得到了证实。只有超出还原论描述,我们才能给出一个量子理论的实在论诠释。波函数并没有坍缩,因为动力学定律现在在密度矩阵ρ的层次上,而不是在波函数Ψ的层次上。而且,观察者不再充当任何特别角色,测量仪器必须提供一个破缺的时间对称性。对于这些系统,有一个优先的时间方向,正如在我们对自然的感知中有一个优先的时间方向一样。这个共同的时间之矢正是我们与物理世界交流的必要条件,它亦是我们与我们的后来人交流的基础。
因此,不稳定性不仅在经典力学而且在量干力学中都充当着核心角色,并且严格说来,它迫使我们扩展经典力学和量子力学的范围。这么做的时候,我们必须离开简单可积系统的领域。由于这一难题在过去几十年中争论得异常热烈,所以得出一个统一的量子理论的表述的可能性特别激动人心,但是扩展经典理论的必要性更显得出乎意料。我们认识到,这意味着与回溯到伽利略和牛顿所构想的西方科学基础的理性传统决裂。但最新的数学方法用于不稳定系统,与它导致的本书所述的扩展,并不是一种纯粹的巧合。它们使我们基于自然的概率描述来包含我们宇宙演化特性的描述。科恩(I.Bernard Cohen)在最近一篇文章里把概率革命说成是应用革命。他写道,“即使1800-1930年间不显示概率领域的一场革命,但它们提供了概率化革命的证据,即随概率和统计学引入经历过革命性变革的领域,而带来惊人结果的一场真正革命的证据。”这场“概率化革命”仍在进行中。
V
现在我们要结束这一章。我们从伊壁鸠鲁和卢克莱修开始,他们所发明的倾向允许新奇性的出现。2500年后,我们终于可以给这个概念一个精确的物理学含义,它起源于被现代动力系统理论确认的不稳定性之中。如果世界由稳定动力学系统组成,它就会与我们所观察到的周围世界迥然不同。它将是一个静态的、可以预言的世界,但我们不能在此作出预言。在我们的世界里,我们在所有层次上都发现了涨落、分岔和不稳定性。导致确定性的稳定系统仅仅与理想化、与近似性相对应。奇怪的是,这又为庞加莱所预见到。在讨论热力学定律时,他写道:
因此,不稳定性不仅在经典力学而且在量干力学中都充当着核心角色,并且严格说来,它迫使我们扩展经典力学和量子力学的范围。这么做的时候,我们必须离开简单可积系统的领域。由于这一难题在过去几十年中争论得异常热烈,所以得出一个统一的量子理论的表述的可能性特别激动人心,但是扩展经典理论的必要性更显得出乎意料。我们认识到,这意味着与回溯到伽利略和牛顿所构想的西方科学基础的理性传统决裂。但最新的数学方法用于不稳定系统,与它导致的本书所述的扩展,并不是一种纯粹的巧合。它们使我们基于自然的概率描述来包含我们宇宙演化特性的描述。科恩(I.Bernard Cohen)在最近一篇文章里把概率革命说成是应用革命。他写道,“即使1800-1930年间不显示概率领域的一场革命,但它们提供了概率化革命的证据,即随概率和统计学引入经历过革命性变革的领域,而带来惊人结果的一场真正革命的证据。”这场“概率化革命”仍在进行中。
V
现在我们要结束这一章。我们从伊壁鸠鲁和卢克莱修开始,他们所发明的倾向允许新奇性的出现。2500年后,我们终于可以给这个概念一个精确的物理学含义,它起源于被现代动力系统理论确认的不稳定性之中。如果世界由稳定动力学系统组成,它就会与我们所观察到的周围世界迥然不同。它将是一个静态的、可以预言的世界,但我们不能在此作出预言。在我们的世界里,我们在所有层次上都发现了涨落、分岔和不稳定性。导致确定性的稳定系统仅仅与理想化、与近似性相对应。奇怪的是,这又为庞加莱所预见到。在讨论热力学定律时,他写道:
第二章 仅仅是一种错觉?
I
本书所论述的结果成熟得很慢。自从我在第一篇关于非平衡热力学的论文中指出了不可逆性的建设性作用,至今已经50多年了。据我所知,这也是第一篇讨论远离平衡态自组织的论文。这么多年后,我时常想:为什么我对时间难题如此着迷?为什么经过这么多年才建立起它和动力学的联系?我并不想在这里讨论热力学和统计力学半个世纪的历史,我仅想解释我自己的动机,指出在这条路上我所遇到的一些主要困难。
我总是把科学看成是人与自然的对话,如同在现实的对话中那样,回答往往是意料之外的——有时候是令人惊讶的。
青年时期,我沉迷于考古学和哲学,尤其是音乐。我母亲过去常说,我在读书之前就会识谱。进入大学以后,我花在钢琴上的时间甚至比在教室听课的时间还多。在所有我喜欢的科目中,无论是文明的逐渐出现,与人的自由相联系的道德问题,还是音乐中声响的时间组织,时间都起了很重要的作用。随着战争威胁的降临,看来以硬科学为职业比较合适,于是我开始在布鲁塞尔自由大学学习物理和化学。
我常常就时间的含义问我的老师,但他们的回答相互矛盾。对哲学家而言,这是所有问题中最难的难题,与人类存在的道德和本性密切相关。物理学家觉得我的问题很天真,因为答案早已为牛顿所给出,且后来为爱因斯坦所证明。结果,我感到吃惊和困惑。在科学中,时间被视为一个纯粹的几何参量。在爱因斯坦和闵可夫斯基(Hermaxin Minkowski)之前100多年的1796年,拉格朗日称动力学为“四维几何学”。爱因斯坦则说“时间[ 与不可逆性相联系]是一种错觉。”以我的背景而言,我无法接受这些说法。然而,空间化时间的传统如今仍然十分活跃,像霍金等许多科学家的著作可以作证。霍金在《时间简史》一书中引入“虚时间”以消除空间和时间的区别。在第八章我们将透彻分析虚时间概念。
我当然不是第一个感觉到时间的空间化与我们周围观察到的演化的世界,以及与我们人自身的经验不相容的人,法国哲学家柏格森才应是第一人。对他来说,“时间就是创造,或者什么都不是”。在第一章,我曾提到他后来的一篇文章“可能与现实”,这是他于1930年在诺贝尔奖颁奖大会上的演讲。在那个场合,他表达了他的感受:人类存在由“不断创生不可预测的新鲜事物”组成;而且他得出了这样的结论:时间证明,自然界存在不确定性。我们周围的宇宙只是许多“可能”世界中的一个。柏格森如果读到第一章未引用的庞加莱的观点没准会十分惊奇。奇妙的是,他们的结论指向同一方向。我还引用了怀特海在他的《过程与实在》一书中表达的观点。对于怀特海而言,终极目标是调和恒常与变易,把存在构想为过程。在他看来,发源于17世纪的经典科学是一个误置具体性的例子,此种具体性不能把创造性表达为大自然的基本属性,“真实世界有其通向新鲜事物的时间通道的特性”。怀特海的真实世界概念显然与任何确定性描述都不相容。
我们可以继续引用海德格尔等人(包括爱丁顿)的话。爱丁顿写道:“任何在属于我们自然界的精神和物质两个方面的经验范畴之间架设桥梁的努力,时间都占据着关键地位。”但这一桥梁未架设起来,时间从前苏格拉底时期到当今仍为争论的热点。对于经典科学来说,时间难题已经由牛顿和爱因斯坦解决了,但是对于大多数哲学家来说,这个解是不完善的。在他们看来,我们不得不转向形而上学。
我个人的信念则不同,放弃科学似乎是不堪付出的沉重代价。毕竟,科学引起了人类与自然之间独特和富有成效的对话。也许经典科学的确把时间限制为一个几何参量,因为它只处理一些简单问题。例如,我们处理无摩擦摆的时候,没有必要扩展时间的概念。但是,一旦科学遇到了复杂系统,就不得不修改它对时间的看法。经常浮现在我脑海中的是一个与建筑风格有关的例子:公元前5世纪的伊朗砖与19世纪的新哥特式砖并无太大的区别,但结果——波斯波利斯王宫与新哥特式教堂——却呈鲜明对照。看来,时间是一种“突现”的特性。但时间之源是什么呢?我坚信,宏观不可逆性是微观尺度上的随机性的表现。但什么是这种随机性的起源呢?
I
本书所论述的结果成熟得很慢。自从我在第一篇关于非平衡热力学的论文中指出了不可逆性的建设性作用,至今已经50多年了。据我所知,这也是第一篇讨论远离平衡态自组织的论文。这么多年后,我时常想:为什么我对时间难题如此着迷?为什么经过这么多年才建立起它和动力学的联系?我并不想在这里讨论热力学和统计力学半个世纪的历史,我仅想解释我自己的动机,指出在这条路上我所遇到的一些主要困难。
我总是把科学看成是人与自然的对话,如同在现实的对话中那样,回答往往是意料之外的——有时候是令人惊讶的。
青年时期,我沉迷于考古学和哲学,尤其是音乐。我母亲过去常说,我在读书之前就会识谱。进入大学以后,我花在钢琴上的时间甚至比在教室听课的时间还多。在所有我喜欢的科目中,无论是文明的逐渐出现,与人的自由相联系的道德问题,还是音乐中声响的时间组织,时间都起了很重要的作用。随着战争威胁的降临,看来以硬科学为职业比较合适,于是我开始在布鲁塞尔自由大学学习物理和化学。
我常常就时间的含义问我的老师,但他们的回答相互矛盾。对哲学家而言,这是所有问题中最难的难题,与人类存在的道德和本性密切相关。物理学家觉得我的问题很天真,因为答案早已为牛顿所给出,且后来为爱因斯坦所证明。结果,我感到吃惊和困惑。在科学中,时间被视为一个纯粹的几何参量。在爱因斯坦和闵可夫斯基(Hermaxin Minkowski)之前100多年的1796年,拉格朗日称动力学为“四维几何学”。爱因斯坦则说“时间[ 与不可逆性相联系]是一种错觉。”以我的背景而言,我无法接受这些说法。然而,空间化时间的传统如今仍然十分活跃,像霍金等许多科学家的著作可以作证。霍金在《时间简史》一书中引入“虚时间”以消除空间和时间的区别。在第八章我们将透彻分析虚时间概念。
我当然不是第一个感觉到时间的空间化与我们周围观察到的演化的世界,以及与我们人自身的经验不相容的人,法国哲学家柏格森才应是第一人。对他来说,“时间就是创造,或者什么都不是”。在第一章,我曾提到他后来的一篇文章“可能与现实”,这是他于1930年在诺贝尔奖颁奖大会上的演讲。在那个场合,他表达了他的感受:人类存在由“不断创生不可预测的新鲜事物”组成;而且他得出了这样的结论:时间证明,自然界存在不确定性。我们周围的宇宙只是许多“可能”世界中的一个。柏格森如果读到第一章未引用的庞加莱的观点没准会十分惊奇。奇妙的是,他们的结论指向同一方向。我还引用了怀特海在他的《过程与实在》一书中表达的观点。对于怀特海而言,终极目标是调和恒常与变易,把存在构想为过程。在他看来,发源于17世纪的经典科学是一个误置具体性的例子,此种具体性不能把创造性表达为大自然的基本属性,“真实世界有其通向新鲜事物的时间通道的特性”。怀特海的真实世界概念显然与任何确定性描述都不相容。
我们可以继续引用海德格尔等人(包括爱丁顿)的话。爱丁顿写道:“任何在属于我们自然界的精神和物质两个方面的经验范畴之间架设桥梁的努力,时间都占据着关键地位。”但这一桥梁未架设起来,时间从前苏格拉底时期到当今仍为争论的热点。对于经典科学来说,时间难题已经由牛顿和爱因斯坦解决了,但是对于大多数哲学家来说,这个解是不完善的。在他们看来,我们不得不转向形而上学。
我个人的信念则不同,放弃科学似乎是不堪付出的沉重代价。毕竟,科学引起了人类与自然之间独特和富有成效的对话。也许经典科学的确把时间限制为一个几何参量,因为它只处理一些简单问题。例如,我们处理无摩擦摆的时候,没有必要扩展时间的概念。但是,一旦科学遇到了复杂系统,就不得不修改它对时间的看法。经常浮现在我脑海中的是一个与建筑风格有关的例子:公元前5世纪的伊朗砖与19世纪的新哥特式砖并无太大的区别,但结果——波斯波利斯王宫与新哥特式教堂——却呈鲜明对照。看来,时间是一种“突现”的特性。但时间之源是什么呢?我坚信,宏观不可逆性是微观尺度上的随机性的表现。但什么是这种随机性的起源呢?
沉醉于这些问题,我转而学习热力学是十分自然的,尤其是布鲁塞尔自由大学在这个学科已有一个由德·唐德尔(Thaphile De Donder)(1870-1957)奠基的热力学学派。
II
在第一章,我们提到了克劳修斯提出的热力学第二定律的经典表述。这一定律基于一个不等式:孤立系的熵S单调增加,直至在热力学平衡时达到其最大值。因而,对于熵随时间的变化,我们有ds≥0。如何才能把这一表述延拓到非孤立的、与外界有物质和能量交换的系统呢?我们必须区分有关熵变dS的两个概念:首先,deS是跨过系统的边界转移的熵;其次,diS是系统内产生的熵。因此,我们有dS=deS十diS。现在,我们可以这样表述热力学第二定律:无论边界条件如何,熵产生diS总是正的,即diS≥0。不可逆过程生熵。德·唐德尔走得更远:他用各种不可逆过程的速率(化学反应速率、扩散速率等等)和热力学力,把每单位时间的熵产生表述为P=diS/dt。事实上,他只考察了化学反应,但这很容易推广。
德·唐德尔在这条道路上并没有走出很远。他主要关注平衡及其邻域。虽然他的工作有其局限性,且在相当长时间里毫无结果,但仍然是向非平衡热力学表述迈出的重要一步。我仍然记得德·唐德尔的工作所遇到的敌意。对绝大多数科学家来说,热力学必须严格限制在平衡态。
这就是当时最有名望的热力学家吉布斯和刘易斯(Gillbert N.Lewis)的观点。在他们看来,与单向性时间相联系的不可逆性是无法容忍的。刘易斯甚至写道:“我们将看到,几乎在任何地方,物理学家从他的学科中清除了与物理学理想不相容的单向时间。”
我亲自体验过这样的敌意。1946年,我组织了由IUPAP(纯粹物理与应用物理国际协会)赞助的第一届统计力学和热力学大会。这样的会议从此一直定期召开并吸引了大批学者,但当时我们仅是大约30-40人一个小团体。我发表了关于不可逆热力学的报告后,一位当时著名的热力学专家作了如下评价:“我惊讶这位年轻人对非平衡物理学如此感兴趣。不可逆过程是短暂的。为什么不缓一缓,像别人一样去研究平衡态呢?”我对这种反应非常惊异,脱口而答:“但我们都是短暂的。对我们人类共同的生存条件感兴趣难道不自然吗?”
我终生都遇到这种对于单向性时间概念的敌意。热力学应当是受限于平衡的学科,这仍是盛行的观点。在第一章我曾提到,把热力学第二定律平庸化的努力是很多著名物理学家信条的一部分。我总是对这种态度感到惊奇。在我们周围,处处可以看到成为“大自然创造性”(怀特海语)证据的结构的出现。我总是感到,这种创造性必须以某种方式与距平衡态的距离联系起来,它是不可逆过程的结果。
例如,对比一下晶体和城镇。晶体是一个可以在真空中保持的平衡结构。如果把城镇孤立起来,它就会消亡。因为它的结构依赖于它的功能,功能和结构是不可分离的。因为结构表达了城镇与外界的交流。
薛定谔在他的优美著作《生命是什么?》中,用熵产生和熵流讨论了生命的新陈代谢。若有机体处于定态,则它的熵随时间保持不变,故ds=0,结果是熵产生diS和熵流相消,diS+des=0,或者des=-diS<0。于是薛定谔断言,生命以“负熵流”为食。“然而,更重要的一点是,生命与熵产生相联系,从而与不可逆过程相联系。
可是,在生命系统或者城镇中的结构是如何在非平衡条件下产生的呢?像在动力学中一样,稳定性问题在这里再次起着重要作用。熵在热力学平衡时最大,这是孤立系的情况。对于温度维持为T的系统,我们有类似的陈述。于是,人们引人“自由能”F=E-TS,能量E和熵S的线性组合。所有热力学教科书都表明,自由能F在平衡态处有最小值(参见图2.1)。因此,扰动或涨落不产生什么影响,因为它们会回到平衡态。这种情况类似于第一章第III节所讨论过的稳定摆。
II
在第一章,我们提到了克劳修斯提出的热力学第二定律的经典表述。这一定律基于一个不等式:孤立系的熵S单调增加,直至在热力学平衡时达到其最大值。因而,对于熵随时间的变化,我们有ds≥0。如何才能把这一表述延拓到非孤立的、与外界有物质和能量交换的系统呢?我们必须区分有关熵变dS的两个概念:首先,deS是跨过系统的边界转移的熵;其次,diS是系统内产生的熵。因此,我们有dS=deS十diS。现在,我们可以这样表述热力学第二定律:无论边界条件如何,熵产生diS总是正的,即diS≥0。不可逆过程生熵。德·唐德尔走得更远:他用各种不可逆过程的速率(化学反应速率、扩散速率等等)和热力学力,把每单位时间的熵产生表述为P=diS/dt。事实上,他只考察了化学反应,但这很容易推广。
德·唐德尔在这条道路上并没有走出很远。他主要关注平衡及其邻域。虽然他的工作有其局限性,且在相当长时间里毫无结果,但仍然是向非平衡热力学表述迈出的重要一步。我仍然记得德·唐德尔的工作所遇到的敌意。对绝大多数科学家来说,热力学必须严格限制在平衡态。
这就是当时最有名望的热力学家吉布斯和刘易斯(Gillbert N.Lewis)的观点。在他们看来,与单向性时间相联系的不可逆性是无法容忍的。刘易斯甚至写道:“我们将看到,几乎在任何地方,物理学家从他的学科中清除了与物理学理想不相容的单向时间。”
我亲自体验过这样的敌意。1946年,我组织了由IUPAP(纯粹物理与应用物理国际协会)赞助的第一届统计力学和热力学大会。这样的会议从此一直定期召开并吸引了大批学者,但当时我们仅是大约30-40人一个小团体。我发表了关于不可逆热力学的报告后,一位当时著名的热力学专家作了如下评价:“我惊讶这位年轻人对非平衡物理学如此感兴趣。不可逆过程是短暂的。为什么不缓一缓,像别人一样去研究平衡态呢?”我对这种反应非常惊异,脱口而答:“但我们都是短暂的。对我们人类共同的生存条件感兴趣难道不自然吗?”
我终生都遇到这种对于单向性时间概念的敌意。热力学应当是受限于平衡的学科,这仍是盛行的观点。在第一章我曾提到,把热力学第二定律平庸化的努力是很多著名物理学家信条的一部分。我总是对这种态度感到惊奇。在我们周围,处处可以看到成为“大自然创造性”(怀特海语)证据的结构的出现。我总是感到,这种创造性必须以某种方式与距平衡态的距离联系起来,它是不可逆过程的结果。
例如,对比一下晶体和城镇。晶体是一个可以在真空中保持的平衡结构。如果把城镇孤立起来,它就会消亡。因为它的结构依赖于它的功能,功能和结构是不可分离的。因为结构表达了城镇与外界的交流。
薛定谔在他的优美著作《生命是什么?》中,用熵产生和熵流讨论了生命的新陈代谢。若有机体处于定态,则它的熵随时间保持不变,故ds=0,结果是熵产生diS和熵流相消,diS+des=0,或者des=-diS<0。于是薛定谔断言,生命以“负熵流”为食。“然而,更重要的一点是,生命与熵产生相联系,从而与不可逆过程相联系。
可是,在生命系统或者城镇中的结构是如何在非平衡条件下产生的呢?像在动力学中一样,稳定性问题在这里再次起着重要作用。熵在热力学平衡时最大,这是孤立系的情况。对于温度维持为T的系统,我们有类似的陈述。于是,人们引人“自由能”F=E-TS,能量E和熵S的线性组合。所有热力学教科书都表明,自由能F在平衡态处有最小值(参见图2.1)。因此,扰动或涨落不产生什么影响,因为它们会回到平衡态。这种情况类似于第一章第III节所讨论过的稳定摆。
相应于非平衡的定态会发生什么情况呢?我们在第一章第II节讨论热扩散时看到过一个定态的例子。非平衡定态是真正稳定的吗?在近平衡情况(所谓“线性”非平衡热力学)下,回答是肯定的。正如我们在1945年所证明的,定态相应于每单位时间熵产生P=diS/dt最小。在平衡态P=O,即熵产生为零,而在围绕平衡态的线性域,P为最小值(参见图2.2)。
涨落再一次消失。但是,这里表现出一个重要的新特性:非平衡系统可以自发地演化到复杂性增加的状态。我们注意到这种建序是不可逆过程的结果,在平衡态是无法实现的。这一点在第一章讨论热扩散例子时已经很清楚了,温度梯度使得混合物部分分离。此后,我们也研究了许多其他例子,在这些例子里,复杂性总是伴随着不可逆性。这些结果成为我们未来研究的准则。
但是,如何把这些在近平衡情况下成立的结论外推到远离平衡态呢?我的同事格兰斯多夫(Paul Glansdorff)和我对这一课题进行了多年的研究。“我们得到了一个惊人的结论:与平衡态发生的情况不同,与近平衡态发生的情况也不同,远离平衡系统不遵守对自由能或熵产生函数有效的最小熵产生原理。结果是,没有什么保证涨落被衰减。我们只能就稳定性得到充分条件的表述,我们称之为“广义演化判据”,这要求厘定不可逆过程的机制。近平衡的自然法则是普适的,但它们在远离平衡时成为机制依赖性的。因此,我们开始注意到我们周围观察到的自然界中的多样性的起因。物质在远离平衡时获得新的属性,涨落和不稳定性现在是正常现象。物质变得更为“活跃”。目前,有许多围绕这一课题的文章,这里我们仅考虑一个简单例子。若有一化学反应,其形式为{A}<=>{X}<=>{F},其中{A}是初始生成物,{X}是中间产物,{F}则是最终生成物。在平衡态,我们有细致平衡,其中存在从{A}到{X},又从{X}到{A}的许多转变,对{X}和{F}亦然。初始生成物与最终生成物之比{A}/{F}在孤立系的情况下取明确定义的值,它相应于最大熵。现在考虑开系,比如一个化学反应器。通过对物质流的适当控制,我们可以把初始生成物{A}和最终生成物{F}两者的值固定。我们把{A}/{F}的比值从它的平衡值开始逐渐增加,当我们远离平衡时,中间产物{X}会发生什么情况呢?
化学反应通常由非线性方程所描述。给定{A}和{F}的值时,中间产物{X}的浓度会有很多解,但只有一个解对应于热力学平衡和最大熵。这个解可以延伸到非平衡区域,我们把这个解称为“热力学分支”。未预料到的结果是,在距平衡态的某个临界距离,热力学分支通常会失稳(参见图2.3)。发生这种情况的点叫做分岔点。
但是,如何把这些在近平衡情况下成立的结论外推到远离平衡态呢?我的同事格兰斯多夫(Paul Glansdorff)和我对这一课题进行了多年的研究。“我们得到了一个惊人的结论:与平衡态发生的情况不同,与近平衡态发生的情况也不同,远离平衡系统不遵守对自由能或熵产生函数有效的最小熵产生原理。结果是,没有什么保证涨落被衰减。我们只能就稳定性得到充分条件的表述,我们称之为“广义演化判据”,这要求厘定不可逆过程的机制。近平衡的自然法则是普适的,但它们在远离平衡时成为机制依赖性的。因此,我们开始注意到我们周围观察到的自然界中的多样性的起因。物质在远离平衡时获得新的属性,涨落和不稳定性现在是正常现象。物质变得更为“活跃”。目前,有许多围绕这一课题的文章,这里我们仅考虑一个简单例子。若有一化学反应,其形式为{A}<=>{X}<=>{F},其中{A}是初始生成物,{X}是中间产物,{F}则是最终生成物。在平衡态,我们有细致平衡,其中存在从{A}到{X},又从{X}到{A}的许多转变,对{X}和{F}亦然。初始生成物与最终生成物之比{A}/{F}在孤立系的情况下取明确定义的值,它相应于最大熵。现在考虑开系,比如一个化学反应器。通过对物质流的适当控制,我们可以把初始生成物{A}和最终生成物{F}两者的值固定。我们把{A}/{F}的比值从它的平衡值开始逐渐增加,当我们远离平衡时,中间产物{X}会发生什么情况呢?
化学反应通常由非线性方程所描述。给定{A}和{F}的值时,中间产物{X}的浓度会有很多解,但只有一个解对应于热力学平衡和最大熵。这个解可以延伸到非平衡区域,我们把这个解称为“热力学分支”。未预料到的结果是,在距平衡态的某个临界距离,热力学分支通常会失稳(参见图2.3)。发生这种情况的点叫做分岔点。
在分岔点之外,出现了一系列新现象:有振荡化学反应,非平衡空间结构和化学波。我们给这些时空组织起了个名字叫耗散结构。热力学给我们导出了化学中出现耗散结构的两个条件的表述:(1)远离平衡情形由临界距离确定;(2)催化步骤,例如,由化合物X生成中间化合物Y以及由Y生成X。
值得注意的是,生命系统也满足这些条件:核苷酸编码蛋白质,蛋白质又编码核苷酸。
我们很幸运:在我们预言了这种种可能性之后,BZ反应——化学振荡的一个特例——的实验结果成了众所周知的事实。我们看到反应溶液变成蓝色,然后变成红色,然后又重新变成蓝色时的激动情景,我至今记忆犹新。现在,人们已经知道了其他许多振荡反应。但是,BZ反应仍有其重要的历史意义,它证明了物质在远离平衡时有新的属性。亿万个分子同时变蓝,然后又同时变红。在远离平衡的条件下这需要出现长程关联,而在平衡态时则没有这种关联。我们再次可以说物质在平衡时是“盲目的”,而在远离平衡时才开始“看见”。我们已经看到,在近平衡态,与熵产生相联系的耗散具有最小值。而在远离平衡态时正相反,新的过程开始,熵产生增加。
远离平衡态化学已取得了稳步的进展。近年来已经观测到了非平衡的空间结构,“这些结构最早是图灵(Alan Mathison Turing)在形态发生的背景下所预言的。”
我们把系统继续推向非平衡态的时候,混沌性态特有的新的分岔就会产生。像与我们在第一章第III节考察过的动力系统相联系的确定性混沌那样,相邻的轨道呈指数发散。
简言之,距平衡态的距离就像平衡热力学中的温度,它成了描述自然的一个基本参量。降低温度,我们会看到各种物态的渐次相变。但是在非平衡物理学中,各种性态的多样性更为显著。为了这一讨论的目的,我们考察了化学,但类似的与非平衡耗散结构相联系的过程在其他许多领域已得到研究,包括流体力学、光学和液晶等领域。
我们来更仔细地考察涨落的临界效应。我们看到,近平衡涨落是无关紧要的,但在远离平衡态,涨落却起着核心作用。我们不仅需要不可逆性,而且还必须放弃与动力学相联系的确定性描述。系统“选择”一个在远离平衡态时可得到的分支。但是在宏观方程中证明对任何一个解都没有偏爱。这里引入了一个不可约概率元。最简单的分岔之一是如图2.4所示的所谓“叉式分岔”,其中λ=0对应于平衡态。
值得注意的是,生命系统也满足这些条件:核苷酸编码蛋白质,蛋白质又编码核苷酸。
我们很幸运:在我们预言了这种种可能性之后,BZ反应——化学振荡的一个特例——的实验结果成了众所周知的事实。我们看到反应溶液变成蓝色,然后变成红色,然后又重新变成蓝色时的激动情景,我至今记忆犹新。现在,人们已经知道了其他许多振荡反应。但是,BZ反应仍有其重要的历史意义,它证明了物质在远离平衡时有新的属性。亿万个分子同时变蓝,然后又同时变红。在远离平衡的条件下这需要出现长程关联,而在平衡态时则没有这种关联。我们再次可以说物质在平衡时是“盲目的”,而在远离平衡时才开始“看见”。我们已经看到,在近平衡态,与熵产生相联系的耗散具有最小值。而在远离平衡态时正相反,新的过程开始,熵产生增加。
远离平衡态化学已取得了稳步的进展。近年来已经观测到了非平衡的空间结构,“这些结构最早是图灵(Alan Mathison Turing)在形态发生的背景下所预言的。”
我们把系统继续推向非平衡态的时候,混沌性态特有的新的分岔就会产生。像与我们在第一章第III节考察过的动力系统相联系的确定性混沌那样,相邻的轨道呈指数发散。
简言之,距平衡态的距离就像平衡热力学中的温度,它成了描述自然的一个基本参量。降低温度,我们会看到各种物态的渐次相变。但是在非平衡物理学中,各种性态的多样性更为显著。为了这一讨论的目的,我们考察了化学,但类似的与非平衡耗散结构相联系的过程在其他许多领域已得到研究,包括流体力学、光学和液晶等领域。
我们来更仔细地考察涨落的临界效应。我们看到,近平衡涨落是无关紧要的,但在远离平衡态,涨落却起着核心作用。我们不仅需要不可逆性,而且还必须放弃与动力学相联系的确定性描述。系统“选择”一个在远离平衡态时可得到的分支。但是在宏观方程中证明对任何一个解都没有偏爱。这里引入了一个不可约概率元。最简单的分岔之一是如图2.4所示的所谓“叉式分岔”,其中λ=0对应于平衡态。
热力学分支从λ=0到λ=λ c是稳定的。超过了λc 点以后,热力学分支失稳且有对称的一对新的稳定解出现。正是涨落决定哪一个分支将被选择。如果我们抑制涨落,系统就维持在不稳定态。做过的实验表明,减小涨落,就可以进入不稳定区。但是,内源涨落或者外源涨落迟早会取得主导,把系统带入其中一个分支b1或b2。
分岔是对称性破缺之源。事实上,超过λc时方程的解通常具有比热力学分支低的对称性户分岔是系统各部分与系统及其环境之间的内禀差别的表现。一旦耗散结构形成,时间的均匀性(例如在振荡化学反应中),或者空间的均匀性(例如在非平衡图灵结构中),或两者,被打破了。
我们通常有如图2.5所示图解形式的逐次分岔。此种系统的时间描述既包含确定性过程(分岔之间)又包含概率性过程(在分支间的选择中)。这里还牵涉到一个历史维度。如果我们观测到系统处于态d2,这就意味着它通过了态b1和c1(参见图2.5)。
分岔是对称性破缺之源。事实上,超过λc时方程的解通常具有比热力学分支低的对称性户分岔是系统各部分与系统及其环境之间的内禀差别的表现。一旦耗散结构形成,时间的均匀性(例如在振荡化学反应中),或者空间的均匀性(例如在非平衡图灵结构中),或两者,被打破了。
我们通常有如图2.5所示图解形式的逐次分岔。此种系统的时间描述既包含确定性过程(分岔之间)又包含概率性过程(在分支间的选择中)。这里还牵涉到一个历史维度。如果我们观测到系统处于态d2,这就意味着它通过了态b1和c1(参见图2.5)。
我们一旦拥有耗散结构,就可以谈及自组织了。即使我们已知初值和边界约束,系统仍有许多作为涨落的结果的态可供“选择”。这些结论的影响已超出了物理学和化学。分岔确实可以被视为多样化和创新之源。这些概念目前已应用于生物学、社会学和经济学等广泛领域。现在,这些课题在全世界的许多交叉科学中心进行研究。仅在西欧,过去10多年就建立了5O多个非线性过程研究中心。
弗洛伊德(Freud)写道,科学的历史就是异化的历史。哥白尼(Copemicus)证明地球并非是行星系的中心;达尔文指出我们人类仅是众多动物中的一种;弗洛伊德认为我们的理性活动仅仅是无意识的一部分。现在,我们可以把这些观点倒转过来。我们看到,人类的创造力和创新性可以被视为在物理学或化学中存在的自然法则的放大。
III
上述结果强烈表明,我们在第一章提到的将热力学平庸化的企图必定失败。时间之矢在结构形成中扮演了基本角色,无论在自然科学还是在生物学中皆如此。但我们只是刚开始我们的探索。我们在化学中的非平衡态下所能产生的最复杂的结构,与我们在生物学中所发现的复杂性之间,仍然存在着一条鸿沟。这不仅仅是个纯科学问题。在给欧共体的一份最近报告中,比布里歇尔(Christof Karl Biebracher),尼科里斯(Gregoire Nicolis)和舒斯特(Peter Schuster)写道:
自然界中的组织不应也不能通过中央管理得以维持;秩序只有通过自组织才能维持。自组织系统能够适应普遍的环境,即系统以热力学响应对环境中的变化作出反应,此种响应使系统变得异常地柔韧且鲁棒,以抗衡外部的扰动。我们想指出,自组织系统比传统人类技术优越,传统人类技术仔细地回避复杂性,分层地管理几乎所有的技术过程。例如,在合成化学里,不同的反应步骤通常被仔细隔离,用搅拌器来避免反应物的扩散。必须开发全新的技术以实现高级指导,并调节自组织系统对技术过程的潜力。自组织系统的优越性可以用生物系统加以说明,在生物系统中,复杂的产物可以以无与伦比的精度、效能和速度形成!
非平衡热力学的结果接近于柏格森和怀特海表达的观点。大自然确实与产生无法预测的新鲜事物相关,“可能”的确比“实在”更丰富。我们的宇宙遵循一条包含逐次分岔的路径,其他的宇宙可能遵循别的路径。值得庆幸的是,我们遵循的这条路径产生了生命、文化和艺术。
我青年时的梦想,是献身于解决时间之谜来求得科学与哲学的统一。* 非平衡物理学表明这一梦想完全可能成真。本章描述的结果促使我更进一步在微观层次上探索时间的概念。我强调了涨落的作用,但什么是涨落之源?我们如何能够调和它们的性态与基于自然法则传统表述的确定性描述呢?倘若我们做到了,就抹煞了近平衡过程与远离平衡过程之间的差别。更有甚者,我们竟然对像经典力学和量子力学这些人类思维独特和绝妙的结构提出质疑。
我必须承认,这些想法不知造成了多少个不眠之夜。没有我的同事和学生们的支持,我可能早就半途而废了。
*早在1937年,我在为一本学生杂志写的3篇短文里表达了这一梦想!
弗洛伊德(Freud)写道,科学的历史就是异化的历史。哥白尼(Copemicus)证明地球并非是行星系的中心;达尔文指出我们人类仅是众多动物中的一种;弗洛伊德认为我们的理性活动仅仅是无意识的一部分。现在,我们可以把这些观点倒转过来。我们看到,人类的创造力和创新性可以被视为在物理学或化学中存在的自然法则的放大。
III
上述结果强烈表明,我们在第一章提到的将热力学平庸化的企图必定失败。时间之矢在结构形成中扮演了基本角色,无论在自然科学还是在生物学中皆如此。但我们只是刚开始我们的探索。我们在化学中的非平衡态下所能产生的最复杂的结构,与我们在生物学中所发现的复杂性之间,仍然存在着一条鸿沟。这不仅仅是个纯科学问题。在给欧共体的一份最近报告中,比布里歇尔(Christof Karl Biebracher),尼科里斯(Gregoire Nicolis)和舒斯特(Peter Schuster)写道:
自然界中的组织不应也不能通过中央管理得以维持;秩序只有通过自组织才能维持。自组织系统能够适应普遍的环境,即系统以热力学响应对环境中的变化作出反应,此种响应使系统变得异常地柔韧且鲁棒,以抗衡外部的扰动。我们想指出,自组织系统比传统人类技术优越,传统人类技术仔细地回避复杂性,分层地管理几乎所有的技术过程。例如,在合成化学里,不同的反应步骤通常被仔细隔离,用搅拌器来避免反应物的扩散。必须开发全新的技术以实现高级指导,并调节自组织系统对技术过程的潜力。自组织系统的优越性可以用生物系统加以说明,在生物系统中,复杂的产物可以以无与伦比的精度、效能和速度形成!
非平衡热力学的结果接近于柏格森和怀特海表达的观点。大自然确实与产生无法预测的新鲜事物相关,“可能”的确比“实在”更丰富。我们的宇宙遵循一条包含逐次分岔的路径,其他的宇宙可能遵循别的路径。值得庆幸的是,我们遵循的这条路径产生了生命、文化和艺术。
我青年时的梦想,是献身于解决时间之谜来求得科学与哲学的统一。* 非平衡物理学表明这一梦想完全可能成真。本章描述的结果促使我更进一步在微观层次上探索时间的概念。我强调了涨落的作用,但什么是涨落之源?我们如何能够调和它们的性态与基于自然法则传统表述的确定性描述呢?倘若我们做到了,就抹煞了近平衡过程与远离平衡过程之间的差别。更有甚者,我们竟然对像经典力学和量子力学这些人类思维独特和绝妙的结构提出质疑。
我必须承认,这些想法不知造成了多少个不眠之夜。没有我的同事和学生们的支持,我可能早就半途而废了。
*早在1937年,我在为一本学生杂志写的3篇短文里表达了这一梦想!
第三章 从概率到不可逆性
I
我们在第二章已看到,不可逆过程描述了形成非平衡耗散结构的自然之基本特征。这样的过程在经典力学和量子力学的时间可逆定律所支配的世界里是不可能的。耗散结构需要时间之矢。而且,若想用这些定律引入的近似来解释耗散结构的出现是没有希望的。
我始终坚信,认识耗散结构乃至更一般地认识复杂性的动力学起源,是当代科学最引人入胜的概念难题之一。如第一章所述,对于不稳定系统,我们必须在统计层次上表述动力学定律。这剧烈改变了我们对自然的描述。在这种表述中,物理学基本客体不再是轨道或波函数,而是概率。因此,我们到了18世纪物理学领域之外的“概率革命”的尾声。然而,面对这种激进结论的含意,为了得到不太极端的解答,我踌躇良久。在《从存在到演化》一书中,我写道:“在量子力学中,有些观测量的数值不能够被同时确定,即坐标和动量。(这是海森伯不确定度关系和玻尔互补原理的精髓。)在此,我们也有一个互补性——动力学描述与热力学描述之间的互补性。”这可能是解决与不可逆性联系在一起的概念难题的一个更不极端的方法。
回顾过去,我对我早先著作中的这段叙述感到遗憾。如果存在一个以上的描述,那么谁来选择正确的描述呢?时间之矢的存在并没有带来方便,它是由观测强加的一件事实。然而,最近几年我们对不稳定系统动力学的研究结果,迫使我们在统计层次上重新表述动力学,并断言这一表述导致经典力学和量子力学的扩展。在本章,我将描述涉及到的某些步骤。
近100年来,我们已经知道,甚至简单的概率性过程也有时间方向。在第一章我们已经提到过“无规行走”,另一个例子是由埃伦费斯特(Paul Ethenfest)和埃伦费斯特(TatianaEhrenfest)提出的“瓮模型”(见图3.1)。
I
我们在第二章已看到,不可逆过程描述了形成非平衡耗散结构的自然之基本特征。这样的过程在经典力学和量子力学的时间可逆定律所支配的世界里是不可能的。耗散结构需要时间之矢。而且,若想用这些定律引入的近似来解释耗散结构的出现是没有希望的。
我始终坚信,认识耗散结构乃至更一般地认识复杂性的动力学起源,是当代科学最引人入胜的概念难题之一。如第一章所述,对于不稳定系统,我们必须在统计层次上表述动力学定律。这剧烈改变了我们对自然的描述。在这种表述中,物理学基本客体不再是轨道或波函数,而是概率。因此,我们到了18世纪物理学领域之外的“概率革命”的尾声。然而,面对这种激进结论的含意,为了得到不太极端的解答,我踌躇良久。在《从存在到演化》一书中,我写道:“在量子力学中,有些观测量的数值不能够被同时确定,即坐标和动量。(这是海森伯不确定度关系和玻尔互补原理的精髓。)在此,我们也有一个互补性——动力学描述与热力学描述之间的互补性。”这可能是解决与不可逆性联系在一起的概念难题的一个更不极端的方法。
回顾过去,我对我早先著作中的这段叙述感到遗憾。如果存在一个以上的描述,那么谁来选择正确的描述呢?时间之矢的存在并没有带来方便,它是由观测强加的一件事实。然而,最近几年我们对不稳定系统动力学的研究结果,迫使我们在统计层次上重新表述动力学,并断言这一表述导致经典力学和量子力学的扩展。在本章,我将描述涉及到的某些步骤。
近100年来,我们已经知道,甚至简单的概率性过程也有时间方向。在第一章我们已经提到过“无规行走”,另一个例子是由埃伦费斯特(Paul Ethenfest)和埃伦费斯特(TatianaEhrenfest)提出的“瓮模型”(见图3.1)。
假设在瓮A和瓮B中分布有N个物体(例如球),以规则的时间间隔(例如每秒)随机地选取一个球,从一个瓮移到另一个瓮中。设在时刻n,A里有k个球,故B里有N-k个球。则在时刻n+l,A里有k-l个球或者k+1个球。这些是明确定义的转移概率。让我们继续进行这场游戏。我们预计,作为球交换的结果,我们将达到每个瓮中约有N/2个球的情况。但是,涨落将不断出现。我们甚至有可能返回到时刻n时瓮A中再次有k个球的情况。正是在概率分布层次上我们看到趋于平衡的不可逆趋向。无论起点如何,可以证明,经n次转移后在一个瓮中找到 k个球的概率pn(k),当n→∞时趋于二项分布N!/(k!(N-k)!)。这一表达式有k=N/2的最大值,而且考虑了分布中的涨落。在玻尔兹曼模型中,最大熵恰好对应于这个二项分布。
埃伦费斯特模型是“马尔可夫过程”(或叫“马尔可夫链”)的一个范例,是以俄国大数学家马尔可夫(Andrei Markov)的名字命名的,他最先描述了此种过程。一旦我们有了概率描述,就常常能够导出不可逆性。但我们如何将概率性过程与动力学联系起来呢?这仍是根本性的难题。
我们已经看到,统计物理学或群体物理学的先驱们已经在这一方向上迈出了基本的一步。麦克斯韦、玻尔兹曼、吉布斯和爱因斯坦都强调过由概率分布ρ描述的系综的作用。那么,一个重要问题是,一旦达到平衡,这一分布函数的形式是什么?设q1,…,q2和p1,…,Ps分别为构成该系统的粒子的坐标和动量。在第一章,相空间由坐标和动量来定义。我们还引入了概率分布ρ(q,p,t)(参见第一章第Ill节)。现在,我们将用单个字母q表示所有坐标,用单个字母p表示所有动量。当ρ变成与时间无关时,达到平衡。所有教科书中都证明,当ρ只依赖于总能量时,才能发生这种情况。第一章第III节提到,总能量是动能(粒子的运动所致)与势能(粒子间的相互作用所致)之和。当用q和p表达时,总能量叫做哈密顿量H(p,q),它随时间保持不变。这就是能量守恒原理,即热力学第一定律。所以,在平衡时,ρ是哈密顿量H的函数是很自然的。
一个重要的特例,是所有系统都具有相同能量E的系综。在整个相空间,除分布函数为常量的表面H(p,q)=E外,其余任何地方分布函数均为零。这叫做“微正则系综”。吉布斯证明,这样的系综确实满足平衡热力学定律。他还考察了其他系综,如所有系统都与处于温度T的热库发生相互作用的“正则系综”。这导致了分布函数指数地依赖于哈密顿量,ρ现在正比于exp(-H/kT),其中T是热库的温度,k是玻尔兹曼常量(该常量使得指数成为量纲一的量)。
一旦平衡分布给定,我们就可以计算所有的热力学平衡性质,诸如,压强、比热等。我们甚至可以超出宏观热力学,因为我们能够包括涨落。一般认为,在平衡统计热力学的广泛领域里不存在什么遗留的概念困难,只存在大部分可以用数值模拟来解决的计算困难。系综理论应用于平衡情形无疑十分成功。请注意:吉布斯所作的平衡热力学的动力学诠释是借助系综,而不是轨道。为了包含不可逆性,我们必须扩展这一方法。
根据经典物理学和量子物理学,在轨道层次(或波函数层次)不存在时间建序,因为未来和过去扮演着相同的角色,这十分自然。然而,在统计描述的层次上用分布函数会发生什么情况呢?我们来观察一杯水。在这个玻璃杯中有数目庞大的分子(1023数量级)。从动力学观点来看,正如第一章所定义的,这是一个不可积庞加莱系统,因为存在着我们无法消除的分子间相互作用。我们可以把这些相互作用现为分子间的碰撞(在第五章,我们将更精确地定义“碰撞”这一术语),并且用统计系综 ρ来描述包含大量碰撞的水。水在变老吗?如果我们只考虑单个的水分子,它们在地质时间尺度是稳定的,水肯定没有变老。然而从统计描述的观点来看,在此系统中存在着自然时间秩序。老化是群体的属性,恰如生物进化的达尔文理论中的情况。它是趋于平衡分布的统计分布,如上面定义的正则分布。要描述这种向平衡的趋近,我们需要关联概念。
埃伦费斯特模型是“马尔可夫过程”(或叫“马尔可夫链”)的一个范例,是以俄国大数学家马尔可夫(Andrei Markov)的名字命名的,他最先描述了此种过程。一旦我们有了概率描述,就常常能够导出不可逆性。但我们如何将概率性过程与动力学联系起来呢?这仍是根本性的难题。
我们已经看到,统计物理学或群体物理学的先驱们已经在这一方向上迈出了基本的一步。麦克斯韦、玻尔兹曼、吉布斯和爱因斯坦都强调过由概率分布ρ描述的系综的作用。那么,一个重要问题是,一旦达到平衡,这一分布函数的形式是什么?设q1,…,q2和p1,…,Ps分别为构成该系统的粒子的坐标和动量。在第一章,相空间由坐标和动量来定义。我们还引入了概率分布ρ(q,p,t)(参见第一章第Ill节)。现在,我们将用单个字母q表示所有坐标,用单个字母p表示所有动量。当ρ变成与时间无关时,达到平衡。所有教科书中都证明,当ρ只依赖于总能量时,才能发生这种情况。第一章第III节提到,总能量是动能(粒子的运动所致)与势能(粒子间的相互作用所致)之和。当用q和p表达时,总能量叫做哈密顿量H(p,q),它随时间保持不变。这就是能量守恒原理,即热力学第一定律。所以,在平衡时,ρ是哈密顿量H的函数是很自然的。
一个重要的特例,是所有系统都具有相同能量E的系综。在整个相空间,除分布函数为常量的表面H(p,q)=E外,其余任何地方分布函数均为零。这叫做“微正则系综”。吉布斯证明,这样的系综确实满足平衡热力学定律。他还考察了其他系综,如所有系统都与处于温度T的热库发生相互作用的“正则系综”。这导致了分布函数指数地依赖于哈密顿量,ρ现在正比于exp(-H/kT),其中T是热库的温度,k是玻尔兹曼常量(该常量使得指数成为量纲一的量)。
一旦平衡分布给定,我们就可以计算所有的热力学平衡性质,诸如,压强、比热等。我们甚至可以超出宏观热力学,因为我们能够包括涨落。一般认为,在平衡统计热力学的广泛领域里不存在什么遗留的概念困难,只存在大部分可以用数值模拟来解决的计算困难。系综理论应用于平衡情形无疑十分成功。请注意:吉布斯所作的平衡热力学的动力学诠释是借助系综,而不是轨道。为了包含不可逆性,我们必须扩展这一方法。
根据经典物理学和量子物理学,在轨道层次(或波函数层次)不存在时间建序,因为未来和过去扮演着相同的角色,这十分自然。然而,在统计描述的层次上用分布函数会发生什么情况呢?我们来观察一杯水。在这个玻璃杯中有数目庞大的分子(1023数量级)。从动力学观点来看,正如第一章所定义的,这是一个不可积庞加莱系统,因为存在着我们无法消除的分子间相互作用。我们可以把这些相互作用现为分子间的碰撞(在第五章,我们将更精确地定义“碰撞”这一术语),并且用统计系综 ρ来描述包含大量碰撞的水。水在变老吗?如果我们只考虑单个的水分子,它们在地质时间尺度是稳定的,水肯定没有变老。然而从统计描述的观点来看,在此系统中存在着自然时间秩序。老化是群体的属性,恰如生物进化的达尔文理论中的情况。它是趋于平衡分布的统计分布,如上面定义的正则分布。要描述这种向平衡的趋近,我们需要关联概念。
No comments:
Post a Comment