34 Fu Q, Bao X H.
Layer-by-layer growth and dissolution of graphene on Ru(0001). In
preparation
35 Sutter P W,
Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nat Mater, 2008, 7:
406—411[DOI]
36 Sutter E,
Acharya D P, Sadowski J T, et al. Scanning tunneling microscopy on epitaxial
bilayer graphene on ruthenium (0001). Appl
Phys Lett, 2009,
94: 133101[DOI]
37 Sutter P,
Hybertsen M S, Sadowski J T, et al. Electronic structure of few-layer epitaxial
graphene on Ru(0001). Nano Lett, 2009, 9:
38 Preobrajenski
A B, Ng M L, Vinogradov A S, et al. Controlling graphene corrugation on
lattice-mismatched substrates. Phys Rev B,
39 Wang B,
Bocquet M L, Marchini S, et al. Chemical origin of a graphene moire overlayer on
Ru(0001). Phys Chem Chem Phys, 2008,
40 Nagashima A,
Tejima N, Oshima C. electronic states of the pristine and
alkali-metal-intercalated monolayer graphite/Ni(111) systems.
Phys Rev B, 1994,
50: 17487—17495[DOI]
41 Shikin A M,
Prudnikova G V, Adamchuk V K, et al. Surface intercalation of gold underneath a
graphite monolayer on Ni(111) studied
by angle-resolved
photoemission and high-resolution electron-energy-loss spectroscopy. Phys Rev B,
2000, 62: 13202—13208[DOI]
42 Li D, Muller M
B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat
Nanotechnol, 2008, 3: 101—105[DOI]
43 Jeong H K, Lee
Y P, Lahaye R, et al. Evidence of graphitic AB stacking order of graphite
oxides. J Am Chem Soc, 2008, 130: 1362—
44 Lerf A, He H,
Forster M, et al. Structure of graphite oxide revisted. J Phys Chem B, 1998,
102: 4477—4482[DOI]
45 Cai W W, Piner
R D, Stadermann F J, et al. Synthesis and solid-state NMR structural
characterization of C-13-labeled graphite oxide.
Science, 2008,
321: 1815—1817[DOI]
46 Barinov A,
Malcioglu O B, Fabris S, et al. Initial stages of oxidation on graphitic
surfaces: Photoemission study and density functional
theory
calculations. J Phys Chem C, 2009, 113: 9009—9013[DOI]
47 Li Z Y, Zhang
W H, Luo Y, et al. How graphene is cut upon oxidation? J Am Chem Soc, 2009, 131:
6320[DOI]
48 Gomez-Navarro
C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual
chemically reduced graphene oxide
sheets. Nano
Lett, 2007, 7: 3499—3503[DOI]
49 Park S, Ruoff
R S. Chemical methods for the production of graphenes. Nat Nanotechnol, 2009, 4:
217—224[DOI]
50 Wu Z S, Ren W
C, Gao L B, et al. Synthesis of high-quality graphene with a pre-determined
number of layers. Carbon, 2009, 47:
51 Dikin D A,
Stankovich S, Zimney E J, et al. Preparation and characterization of graphene
oxide paper. Nature, 2007, 448: 457—460[DOI]
52 Ito J,
Nakamura J, Natori A. Semiconducting nature of the oxygen-adsorbed graphene
sheet. J Appl Phys, 2008, 103: 113712[DOI]
53 Boukhvalov D
W, Katsnelson M I. Modeling of graphite oxide. J Am Chem Soc, 2008, 130:
10697—10701[DOI]
54 Sofo J O,
Chaudhari A S, Barber G D. Graphane: A two-dimensional hydrocarbon. Phys Rev B,
2007, 75: 153401[DOI]
55 Boukhvalov D
W, Katsnelson M I, Lichtenstein A I. Hydrogen on graphene: Electronic structure,
total energy, structural distortions
and magnetism
from first-principles calculations. Phys Rev B, 2008, 77: 035427[DOI]
56 Guisinger N
P, Rutter G M, Crain J N, et al. Exposure of epitaxial graphene on SiC(0001) to
atomic hydrogen. Nano Lett, 2009, 9:
57 Balog R,
Jørgensen B, Wells J, et al. Atomic hydrogen adsorbate structures on graphene. J
Am Chem Soc, 2009, 131: 8744—8745[DOI]
58 Ryu S, Han M
Y, Maultzsch J, et al. Reversible basal plane hydrogenation of graphene. Nano
Lett, 2008, 8: 4597—4602[DOI]
59 Liu L, Ryu S
M, Tomasik M R, et al. Graphene oxidation: Thickness-dependent etching and
strong chemical doping. Nano Lett, 2008,
60 Elias D C,
Nair R R, Mohiuddin T M G, et al. Control of Graphene’s properties by reversible
hydrogenation: Evidence for graphane.
Science, 2009,
323: 610—613[DOI]
61 Lherbier A,
Blase X, Niquet Y M, et al. Charge transport in chemically doped 2D graphene.
Phys Rev Lett, 2008, 101: 036808[DOI]
62 Wei D C, Liu
Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition
and its electrical properties. Nano
Lett, 2009, 9:
1752—1758[DOI]
63 Wang X R, Li
X L, Zhang L, et al. N-doping of graphene through electrothermal reactions with
ammonia. Science, 2009, 324: 768-771[DOI]
64 Liu A Y,
Cohen M L. Prediction of new low compressibility solids. Science, 1989, 245:
841—842[DOI]
65 Teter D M,
Hemley R J. Low-compressibility carbon nitrides. Science, 1996, 271: 53—55[DOI]
66 Hod O, Barone
V, Peralta J E, et al. Enhanced half-metallicity in edge-oxidized zigzag
graphene nanoribbons. Nano Lett, 2007, 7:
67 Kan E J, Li Z
Y, Yang J L, et al. Half-metallicity in edge-modified zigzag graphene
nanoribbons. J Am Chem Soc, 2008, 130: 4224[DOI]
68 Nhut J M,
Pesant L, Tessonnier J P, et al. Mesoporous carbon nanotubes for use as support
in catalysis and as nanosized reactors for
one-dimensional
inorganic material synthesis. Appl Catal A-Gen, 2003, 254: 345—363[DOI]
No comments:
Post a Comment