Dedicate to my Honey.
一个老问题:不正对着光源时为何也能看到光线?标准答案是源于光线的反射和在空气中的散射作用。其实,按照我大学室友的说法,还要加上电磁波的Huygens(惠更斯)衍射效应。尽管后者在高阶近似意义下可忽略。
惠更斯是荷兰历史上最著名的物理学家,是介于伽利略与牛顿之间的一位重量级物理学先驱。他提出了重要的惠更斯原理,与牛顿叫板创立了波动光学理论。惠更斯是将几何学用于力学研究的先驱之一,他对几何学的另一个间接贡献是,后人对惠更斯原理的研究直接导至了对称空间中等参超曲面的概念。如今等参超曲面(Isoparametric hypersurfaces)是黎曼几何里一个独立的研究方向,至今仍有许多open problems.
其实,对于学数学的人来说,惠更斯原理(Huygens principle)不应是陌生的词汇,它在双曲型偏微分方程的某些估计中提供指导思想,几乎出没于各个版本的本科生偏微分方程教材。
一个出人意料的结论是:偶数维空间里波动方程的解具有后效性,就像水面波,一石激起千层浪,久久不能平息。奇数维空间里的波动方程解无后效性,所以一个距离乐器d距离的听众,在t时刻听到的仅仅是t-d/v时刻所奏的音符,其中v是指音速。这里奇数维很重要,偶数维的话,听众听到的声音可是之前所有时刻声音的叠加…乱糟糟一团…难怪我们要生活在三维空间里了。
惠更斯原理(Huygens principle)
在波的传播过程中,总可以找到同相位的点,这些点的轨迹是一个等相面,叫做波面(也叫做波前)。惠更斯曾提出次波的假设来阐述波的传播现象,建立了惠更斯原理.惠更斯原理可表述如下:
任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面。
我们回忆波的传递是波动形式的传播,而不是质点的具体运动,一个例子就是观众席上的人浪,从观众席的一边“喔…喔…”地传到另一边,波动形式是观众们的顺次起伏,传播的是波动形式,不过观众作为振动质点其位置始终没有变。人浪波的波前,就是集体弯腰撅腚的等相面。波前的另一个例子就是海边的波浪,波浪都是平行海岸线涌来的,路过的童鞋可记得是为什么?
借助Huygens原理,人们可以轻易解释光的反射、折射甚至晶体的双折射效应,再加上后来菲涅尔对惠更斯原理的几点补充,惠更斯---菲涅尔原理可以定量的解释波的衍射现象,不过这与下边的等参超曲面问题无关。
等参超曲面(Isoparametric hypersurfaces)
有了三维空间中的波动方程,人们在几何光学里很自然地就会遇到这样的问题:
一列波在均匀介质中传播(从而处处波速相等)时,各个时刻波前(最前边的等相面)的形状是怎样的?
最简单的情况,就是一个点波源诱发的球面波,波前就是同心球面族;然后是一个线波源,诱发的同轴柱面族;或者是一个面波源诱导的平行平面族;没错,其实就这么几种情形,这些结果对于19世纪的物理学家足够了,事实上,Laura,Sommigliana他们就是这么做的。
对于紧跟其后的数学家Levi-Civita,Segre,E.Cartan等人来说这个问题还远没有结束,三维欧氏空间的情形解决了,但是高维欧式空间里的波前形状是怎样的呢?曲率不为零的球面空间、双曲空间里又是怎样的呢?
这些形状如今称为等参超曲面。
后面的发展证明,这些研究都不是为了数学而数学,很多成果都用到了物理中。数学在物理中总是那么不可理喻额的有效。
考虑高维一般空间里波前的形状,首先就是建立波前所满足的方程:
还是退回到三维最简单情形:波动方程(这个方程相当于波速为单位一)
其中波函数描述各个振动质点的相位;我们要求的波前(等相位面)是波函数取相同值点的集合,描波前的方程里不应含有时间t,波前方程只与空间坐标有关。注意到垂直于某个等相面,波前沿梯度方向的速度在这个等相面上处处相同(均匀介质嘛)
所以
这里的ds是波前沿法方向(其实就是梯度方向)的微小位移。这样,根据波动方程
我们注意到一点,波函数的梯度模长平方和Laplacian,这两个函数限制在等相面上是常数(等参概念源于此,代表等相面上的点都有相同的参数);这就是波前应满足的方程,所以我们可以如下定义我们的等参超曲面:
把欧式空间换为球面空间或双曲空间,梯度和拉普拉斯算子换为对应空间里的,我们就得到空间形式里等参超曲面的限制方程。
直接代数或分析的解这些方程几乎不可能,人们采取迂回战术,从几何的角度,借助微分几何和代数拓扑的工具找到了很多性质和限制条件。最有意思的一个是,空间形式中,每一族等参超曲面都是互相平行的,即任意两者间的测地线距离相等;每个等参超曲面都是常主曲率超曲面。考虑三维空间中的情形,常主曲率曲面只有平面、柱面或标准球面,这正好是我们前面提到过的所有可能情况。
一个早期的结论是,欧氏空间和双曲空间里的等参超曲面,或者是全脐点超曲面,或者是两个不同类型的全脐点曲面的乘积;而球面中的等参超曲面要复杂的多,是我们的“直觉”所猜不到的。对于球面情形至今没有获得全部的分类。 一个惊人的结论是,这些超曲面全是常主曲率的,不同主曲率的个数只能是1,2,3,4或6.德国人Munzner借助上同调算出来的。别问我,其实我也不懂。
我们师门的一个结果是,球面空间中每一族等参超曲面中(包括退化的焦流形),至少有一个极小子流形,一个Einstein子流形,一个Willmore子流形。借助等参族的性质,我的师兄谢余铨和葛建全解决了一个关于Ginzburgh-Laudau系统(描述第二型超导的方程)的问题,文章很意外地发在分析类的杂志Jounal of Functional Analysis上,看来二位为分析背叛几何了。
最近的一个结论是,我的导师唐梓洲教授和师姐彦文娇证明了等参极小超曲面(甚至焦流形)的第一特征值都等于超曲面的维数。关于极小超曲面的第一特征值问题,是丘成桐先生问题集的第100个problem,Yau猜想球面空间里的极小超曲面第一特征值总等于它的维数。这个问题大家一直难以下手,唐老师和师姐解决了这个问题的等参情形,所以论文很快便被Journal of Differential Geometry录用了。等参族里确有宝藏啊
No comments:
Post a Comment