文章与日志
作为群和解析流形的李群
Thu, 2005-03-10 18:53 — yijun
首先群是一个基本的乘法结构,然后解析流形是良好的做分析的背景,两者组合在一起,也就是说令群的乘法是解析映射,决定了李群是非常重要的对象。
李群是可完全分类的群:
对李群的完全分类是通过绕行到其作为一个流形的切空间上进行的,即李代数。
一个李群的李代数由其所有群上左不变向量场构成。这个提升的好处是,如果两个李群同构,则其各自的李代数也同构;反过来如果两个李代数同构,则各自的李群局部同构,如果我们限定于单连通李群,则局部同构可扩充为同构。因此单连通时李群与李代数可以一一对应。
然后的问题就是李代数的完全分类,由Cartan-Killing完成。
李群是可完全分类的群:
对李群的完全分类是通过绕行到其作为一个流形的切空间上进行的,即李代数。
一个李群的李代数由其所有群上左不变向量场构成。这个提升的好处是,如果两个李群同构,则其各自的李代数也同构;反过来如果两个李代数同构,则各自的李群局部同构,如果我们限定于单连通李群,则局部同构可扩充为同构。因此单连通时李群与李代数可以一一对应。
然后的问题就是李代数的完全分类,由Cartan-Killing完成。
No comments:
Post a Comment