Monday, January 7, 2013

拉普拉斯-龍格-冷次向量(簡稱為 LRL 向量)主要是用來描述,當一個物體環繞著另外一個物體運動時,軌道的形狀與取向。典型的例子是行星的環繞著太陽公轉。在一個物理系統裏,假若兩個物體以萬有引力交互作用,則 LRL 向量必定是一個運動常數,不管在軌道的任何位置,計算出來的 LRL 向量都一樣[1];也就是說, LRL 向量是一個保守量。更廣義地,在克卜勒問題裏,由於兩個物體以連心力交互作用,而連心力遵守平方反比定律,所以,LRL 向量是一個保守量[2

經典力學裏,拉普拉斯-龍格-冷次向量(簡稱為 LRL 向量)主要是用來描述,當一個物體環繞著另外一個物體運動時,軌道的形狀與取向。典型的例子是行星的環繞著太陽公轉。在一個物理系統裏,假若兩個物體以萬有引力交互作用,則 LRL 向量必定是一個運動常數,不管在軌道的任何位置,計算出來的 LRL 向量都一樣[1] ;也就是說, LRL 向量是一個保守量。更廣義地,在克卜勒問題裏,由於兩個物體以連心力交互作用,而連心力遵守平方反比定律,所以,LRL 向量是一個保守量[2]


氫原子是由兩個帶電粒子構成的。這兩個帶電粒子以遵守庫侖定律靜電力互相作用.靜電力是一個標準的平方反比連心力。所以,氫原子內部的微觀運動是一個克卜勒問題。在量子力學的發展初期,薛丁格還在思索他的薛丁格方程式的時候,沃爾夫岡·包立使用 LRL 向量,關鍵性地導引出氫原子的發射光譜[3]。這結果給予物理學家很大的信心,量子力學理論是正確的。


經典力學量子力學裏,因為物理系統的某一種對稱性,會產生一個或多個對應的保守值。 LRL 向量也不例外。可是,它相對應的對稱性很特別;在數學裡,克卜勒問題等價於 一個粒子自由地移動於 四維空間的三維球面[4];所以,整個問題涉及四維空間的某種旋轉對稱[5]


拉普拉斯-龍格-冷次向量是因皮埃爾-西蒙·拉普拉斯卡爾·龍格,與威爾漢·冷次而命名。它又稱為拉普拉斯向量龍格-冷次向量,或冷次向量。有趣的是,LRL 向量並不是這三位先生發現的!這向量曾經被重複地發現過好幾次[6]。它等價於天體力學中無因次離心率向量[7]。發展至今,在物理學裡,有許多各種各樣的 LRL 向量的推廣定義;牽涉到狹義相對論,或電磁場,甚至於不同類型的連心力

No comments:

Post a Comment