Sunday, June 15, 2014

热失控,由于温度与电流的平衡关系脆弱,表现在过充电时电解水产生的热量不能很好的释放,温度和电流形成正反馈,相互推升直 至失控

阀控式铅酸蓄电池(以下简称阀控电池)因其成熟的技术,高性价比和维护简单等特性,被广 泛应用于通信、电力系统当中。但导致阀控电池失效的原因有很多,其中热失控就是典型现象,热失控的直接导致后果就是是电池内部电解液干涸,电池内阻异常, 电池壳体变形膨胀,甚至破裂,散发出大量酸性气体。
  阀控电池的结构决定了热失控现象的产生,阀控电池与排气式富液电池相比较,富液电池的电解液容量较多且有良好的排气散热功能,大量的电解液对化学反应温度 上升有很好的缓冲作用,且反应时蒸发的气体带走了大部分热量,即便采用不同的充电方式,都不易在富液电池使用中出现热失控,而阀控电池封闭的结构与相对较 少的电解液决定这种结构易发生热失控,由于温度与电流的平衡关系脆弱,表现在过充电时电解水产生的热量不能很好的释放,温度和电流形成正反馈,相互推升直 至失控。 
  一、阀控电池热失控的原因
  1.产生热量的原因:阀控电池在放电后回充时,一般充电设备先进行均充,设定不超过0.1C的 均充电流,即12V150AH的电池,均充电流不超过15A(0.1C*150AH),随着电池端电压不断上升,充电电流则不断下降,当端电压满足(一般 2.25~2.27V/只)转入恒压充电,充电电流降至某一个设定的很小值后(依各厂家不同,设定值略有不同)转入浮充状态,上述就是三段式充电的过程。
  前期由于电池放电,特别是放电量较大时,在后期充电过程中电能基本补充损失的化学能,没有过多的电能转化为热能,而电池即将充满时,电能将大部分转化为热能,引起电池内部温度升高,所以在充电后期或是浮充状态,保证小电流充电,避免大量电能转化为热能是非常重要。
  2.电池充放电反应的方程式:
  Pb(负极)+PbO2(正极)+2H2SO4=2PbSO4+2H2O
  其中由正极产生的氧气与负极反应:
  2Pb+O2=2PbO;
  PbO+H2SO4=PbSO4+H2O
  上述两个反应均是放热反应。而浮充电流对温度十分敏感,温度的上升会导致浮充电流增大,若充电设备没有温度补偿功能,不能及时调整浮充电压(当温度上升时 适当降低浮充电压,且保证浮充电流不变),浮充电流增加又加速放热反应的进行,则浮充电流和温度相互影响逐步升高,直至出现热失控。
  曾处理过一 场热失控事故,事故地点在某大厦地下3层,两台UPS各挂20支电池,两台UPS电源和电池品牌均对应一致且在相同环境中,一组共20块电池全部膨胀报 废,另一组20支电池完好,电池为名牌产品同一批次,进场时曾做过检测,不存在质量问题。后经分析,造成热失控的直接原因是UPS电源充电部分故障,是由 于过充引起,非电池问题。  
  原因如下:
  1.从UPS电源历史记录中可查,该UPS电源在电池没有放电的情况下,突然由浮充转均充并充电12个小时,导致电池内部温度突升,壳体变形。 
  2.地下室精密空调之前由于室外机过脏,高压锁定停机,缺少了降温设备导致加速了热失控的发生。
  3.UPS间没有监控设备和负责人员,长期处于无人看管的状态。
  对于此次事故,客户曾有疑问,怀疑电池膨胀的原因是由于电池排气阀未能及时打开所致。膨胀变形原因分为热变形和受力变形,电池壳体承受压力变形的能力远大 于排气阀,若出现内部压力过高,肯定会首先打开排气阀减少压力。实际电池膨胀是因为热变形造成,在热失控情况下,内部温度过高造成壳体高温变形。 
  二、预防措施
  1.建议使用带有温度补偿的充电设备,增加电池监控设备为上策,以对每一块电池实时测量性能。
  2.UPS间室内环境应通风,温度维持在20~25°C,配备机房专用空调,以适应长时间不间断的恒温需求。
  3.免维护电池只是维护量相对降低,并非不需维护与保养,在使用中也是需要有人维护。

  综合上述,阀控电池热失控是在外因的诱导下逐步发生的,因此在使用中对可能造成热失控的因素要稍加注意,在一定程度上可预防热失控的出现,保障设备的安全,保障客户的利益。



  本文由易事特整理提供,转载于http://www.eastups.com/newsshow.aspx?Id=485&CateId=557,

No comments:

Post a Comment