光的衍射,干涉,色散,折射,反射
光是一种电磁波,在传播过程中有两个垂直于传播方向的分量:电场分量和磁场分量。
当电场分量与传播过程中的每一个原子发生作用,
引起电子极化,即造成电子云和原子荷重心发生相对位移。
其结果是一部分能量被吸收,同时光的速度被增大,方向发生变化,导致折射的发生。 反射和折射不能用粒子性解释,应用经典粒子理论得到的折射速度不对。
在经典波动光学之中能有较好的解释。
在利用近代理论解释光的折射和反射过程中,也不能理解为粒子碰撞。
实际上可以理解为部分光子透射、部分光子反射。
但是如果想问是哪个光子反射、哪个光子折射,实际上是办不到的。
因为光子只代表电磁场能量分布,其出现多少代表了电磁场的能量大小。
在光入射到物质表面时,部分电磁场能量透射,形成折射光,部分电磁场能量反射,因此在折射和反射方向都能探测到光子。
当电场分量与传播过程中的每一个原子发生作用,引起电子极化,即造成电子云和原子荷重心发生相对位移。
其结果是一部分能量被吸收,同时光的速度被增大,方向发生变化,导致折射的发生。 反射和折射不能用粒子性解释,应用经典粒子理论得到的折射速度不对。
在经典波动光学之中能有较好的解释。
在利用近代理论解释光的折射和反射过程中,也不能理解为粒子碰撞。
实际上可以理解为部分光子透射、部分光子反射。
但是如果想问是哪个光子反射、哪个光子折射,实际上是办不到的。
因为光子只代表电磁场能量分布,其出现多少代表了电磁场的能量大小。
在光入射到物质表面时,部分电磁场能量透射,形成折射光,部分电磁场能量反射,因此在折射和反射方向都能探测到光子。
1
Snell's law 斯涅尔定律 ,又称折射定律

Wavefronts from a point source in the context of Snell's law. The region below the grey line has a higher index of refraction, and proportionally lower speed of light, than the region above it.

Wavefronts from a point source in the context of Snell's law. The region below the grey line has a higher index of refraction, and proportionally lower speed of light, than the region above it.
Vector form 向量形式
Given a normalized light vector l (pointing from the light source toward the surface) and a normalized plane normal vector n, one can work out the normalized reflected and refracted rays:[11]
Note:
must be positive. Otherwise, use
Example:

Given a normalized light vector l (pointing from the light source toward the surface) and a normalized plane normal vector n, one can work out the normalized reflected and refracted rays:[11]
色散原理 复色光分解为单色光而形成光谱的现象叫做光的色散。
可见光谱[1]色散可以利用三棱镜或光栅等作为“色散系统”的仪器来实现。
复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,将颜色按一定顺序排列形成光谱。
光谱(spectrum) 是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。
可见光谱[1]色散可以利用三棱镜或光栅等作为“色散系统”的仪器来实现。
复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,将颜色按一定顺序排列形成光谱。

光谱(spectrum) 是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。

Sources of dispersion
There are generally two sources of dispersion: material dispersion and waveguide dispersion.
Material dispersion comes from a frequency-dependent response of a material to waves. For example, material dispersion leads to undesired chromatic aberration in a lens or the separation of colors in a prism.

There are generally two sources of dispersion: material dispersion and waveguide dispersion.
Material dispersion comes from a frequency-dependent response of a material to waves. For example, material dispersion leads to undesired chromatic aberration in a lens or the separation of colors in a prism.

Waveguide dispersion occurs when the speed of a
wave in a waveguide (such as an optical fiber) depends on its frequency for
geometric reasons, independent of any frequency dependence of the materials from
which it is constructed. 
More generally, "waveguide" dispersion can occur for waves propagating through any inhomogeneous structure (e.g., a photonic crystal), whether or not the waves are confined to some region.
In general, both types of dispersion may be present, although they are not strictly additive.
Their combination leads to signal degradation in optical fibers for telecommunications, because the varying delay in arrival time between different components of a signal "smears out" the signal in time.

More generally, "waveguide" dispersion can occur for waves propagating through any inhomogeneous structure (e.g., a photonic crystal), whether or not the waves are confined to some region.

In general, both types of dispersion may be present, although they are not strictly additive.
Their combination leads to signal degradation in optical fibers for telecommunications, because the varying delay in arrival time between different components of a signal "smears out" the signal in time.

在经典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后会发生不同程度的弯散传播。
假设将一个障碍物置放在光源和观察屏之间,
则会有光亮区域与阴晦区域出现于观察屏,而且这些区域的边界并不锐利,是一种明暗相间的复杂图样
假设将一个障碍物置放在光源和观察屏之间,
则会有光亮区域与阴晦区域出现于观察屏,而且这些区域的边界并不锐利,是一种明暗相间的复杂图样






No comments:
Post a Comment