Friday, February 1, 2013

重力紅移,愛因斯坦效應 紅移可以經由單一光源的光譜進行測量(參考上面理想化的光譜例証圖)。如果在光譜中有一些特徵,可以是吸收線、發射線、或是其他在光密度上的變化,那麼原則上紅移就可以測量。這需要一個有相似特徵的光譜來做比較,例如,原子中的氫,當他發出光線時,有明確的特徵譜線,一系列的特色譜線都有一定間隔的。如果有這種特性的譜線型態但在不同的波長上被比對出來,那麼這個物體的紅移就能測量了。因此,測量一個物體的紅移,只需要頻率或是波長的範圍。只觀察到一些孤立的特徵,或是沒有特徵的光譜,或是白噪音(一種相當無序雜亂的波),是無法計算紅移的

另一種形式的紅移是重力紅移,也就是所謂的愛因斯坦效應,是發生在廣義相對論中當接近大質量物體產生時間擴張的結果[4]

紅移
维基百科,自由的百科全书
跳转至: 导航搜索
圖右是遙遠的星系在可見光波段的光譜,與圖左太陽的光譜比較,可以看見譜線)朝紅色的方向移動,即波長增加(頻率降低)
物理學天文學领域,紅移(Redshift)是指物体的電磁輻射由于某种原因波长增加的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离,即波长变长、頻率降低。相反的,波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波長增加都可以称为紅移。对于波长较短的γ射線X-射線紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对于波长较长的紅外線微波無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。
當光源遠離觀測者运动时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達雷達槍[1],在分光學上,人们使用都卜勒紅移測量天體的運動[2]。這種都卜勒紅移的現象最早是在19世紀所預測并觀察到的,當時的部分科學家认为的本質是一种
另一種紅移機制被用於解释在遙遠的星系類星體星系間的氣體雲的光谱中觀察到的红移现象。紅移增加的比例與距離成正比。這種關係为宇宙在膨脹的观点提供了有力的支持,比如大霹靂宇宙模型[3]
另一種形式的紅移是重力紅移,也就是所謂的愛因斯坦效應,是發生在廣義相對論中當接近大質量物體產生時間擴張的結果[4]
红移的大小由“红移值”衡量,红移值用Z表示,定义为:
Z = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{f_0 - f}{f}
这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。

目录

[隐藏]

[编辑] 分類

光源相对观测者的运动导致红移和蓝移
  • 多普勒紅移:物体和观察者之间的相对运动可以导致红移,与此相对应的红移称为多普勒红移,是由多普勒效应引起的。
  • 重力紅移:根据广义相对论重力場中发射出来时也会发生红移的现象。这种红移称为重力紅移
  • 宇宙學紅移:20世纪初,美国天文学家埃德温·哈勃发现,观测到的绝大多数星系的光谱线存在红移现象。这是由於宇宙空间在膨胀,使天体發出的光波被拉長,谱线因此“变红”,这稱為宇宙學紅移,并由此得到哈勃定律。20世纪60年代发现了一类具有极高红移值的天体:类星体,成为近代天文学中非常活跃的研究领域。

[编辑] 簡史

這個主題的發展開始於19世紀對波動力學現象的探索,因而連結到了都卜勒效應。稍後,因為克裏斯琴·安德烈·都卜勒在1842年對這種現象提出了物理學上的解釋,而被稱為都卜勒效應[5]。他的假說在1845年被荷蘭的科學家Christoph Hendrik Diederik Buys Ballot聲波做實驗而獲得證實[6]。都卜勒預言這種現象可以應用在所有的波上,並且指出恆星的顏色不同可能是由于它们相对于地球的运动速度不同而引起的[7]。后来這個推論被否认。恆星呈現不同的顏色是因為溫度不同,而不是運動速度不同。
都卜勒紅移是法國物理學家斐索在1848年首先發現的,他指出恆星譜線位置的移動是由于都卜勒效應,因此也稱為“都卜勒-斐索效應”。1868年,英國天文學家威廉·哈金斯首次測出了恆星相对于地球的运动速度[8]
在1871年,利用太陽的自轉測出在可見光太陽光譜的夫朗和斐譜線在紅光有0.1 Å的位移。[來源請求] [9]在1901年,Aristarkh Belopolsky在實驗室中利用轉動的鏡片證明了可見光的紅移[10]
在1912年開始的觀測,維斯托·斯里弗發現絕大多數的螺旋星雲都有不可忽視的紅移。[11]然後,埃德温·哈勃發現這些星雲(現在知道是星系)的紅移和距離有關聯性,也就是哈柏定律。[12]這些觀察在今天被認為是造成宇宙膨脹大霹靂理論的強而有力證據。[13]

[编辑] 測量、特性和解釋

紅移可以經由單一光源的光譜進行測量(參考上面理想化的光譜例証圖)。如果在光譜中有一些特徵,可以是吸收線發射線、或是其他在光密度上的變化,那麼原則上紅移就可以測量。這需要一個有相似特徵的光譜來做比較,例如,原子中的,當他發出光線時,有明確的特徵譜線,一系列的特色譜線都有一定間隔的。如果有這種特性的譜線型態但在不同的波長上被比對出來,那麼這個物體的紅移就能測量了。因此,測量一個物體的紅移,只需要頻率或是波長的範圍。只觀察到一些孤立的特徵,或是沒有特徵的光譜,或是白噪音(一種相當無序雜亂的波),是無法計算紅移的。[14]
紅移(和藍移)可能會在天體被觀測的和輻射的波長(或頻率)而帶有不同的變化特徵,天文學習慣使用無因次的數量z來表示。如果λ代表波長,f代表頻率(注意:λf = c,此處的c光速),那麼z可以由下面的公式來定義:

No comments:

Post a Comment