线性应变所产生二次谐波振幅为同数量级。
金属中声和导电电子 金属中原子的外层电子可在点阵的周期势场中运动(见金属电子论)。声波引起点阵振动时,点阵电势也随之发生周期性的变化,从而与电子发生相互作用。
在金属点阵中,杂质原子、点阵本身的振动等各种因素也可引起势场的不均匀,对电子运动造成散射。这种散射决定了金属中电子运动的平均自由程。如果声波波长比电子平均自由程大得多,则声和电子相互作用就很微弱;若声波波长比电子自由程小得多,则声和电子的相互作用就比较显著。例如在低温条件下,非常纯的金属中电子平均自由程可大于声波波长,这时声吸收较大,而且与声波频率成正比。温度进一步降低,声吸收继续增加。如果在传声金属固体中外加磁场,则电子运动轨迹受磁场影响而弯曲,受碰撞的机会增加,电子的平均自由程减小。因此外加合适的磁场能使超声吸收明显变化。
声和半导体载流子 声波可通过半导体点阵振动而造成载流子势场的畸变,与载流子发生相互作用。这种畸变势耦合所造成的声与载流子之间的相互作用在通常的超声频率下十分微弱。在压电半导体中,声也可以通过压电效应(见压电性)产生电场,与载流子相互作用,它比畸变势耦合强得多。
如果在半导体中加上直流电压使载流子沿声传播方向漂移,那么声和载流子之间互作用就要改变。载流子漂移速度小于声传播速度时,这种互作用使声波吸收,但是如果载流子的漂移速度超过声的传播速度,声波能得到放大。
依此原理制作的典型声波放大器如图所示[典型的声波放大器原理图]
。一块两端蒸镀金属电极的压电半导体硫化镉放在两个熔石英延迟棒之间,两个相同的切变波换能器(一个作为发射器,另一个作为接收器)分别粘贴在两个石英延迟棒外端,受激励的声切变波脉冲通过硫化镉样品时,在样品的两电极间加上同相位的直流电脉冲,倘若所加的直流电脉冲幅度足够高,则能观察到超声波的放大现象。
声和自旋 声与自旋相互作用的机理有好几种,其一是,磁偶极子(见磁矩)和磁偶极子之间的互作用与它们之间的距离三次方成反比,声的应变使这距离发生改变。另一种机理是由于核的电四极矩(见原子核)相互作用。声振动造成点阵电场梯度改变,影响核的电四极矩
还有一种机理是声造成晶体点阵中电场的畸变,从而与电子的轨道运动相互作用,再通过自旋-轨道耦合(见耦合'"
class=link>
耦合)与自旋发生相互作用
声与自旋的相互作用使声发生共振吸收而造成传播衰减;反过来,用电磁波使顺磁离子处于高低能态数目倒转,在顺磁材料中传播的超声波能得到受激放大或受激振荡。
关于声波在超导体及超流体中的传播见量子声学。
参考书目
R.T.Beyer
and S.V.Letcher,Physical Ultrasonics,Academic Press, New York, 1969.
R.
Truell,et al.,Ultrasonic
ethods in Solid State
Physics,Academic Press, New York, 1969.
王耀俊 水永安 魏荣爵
No comments:
Post a Comment