rcs01 玻耳兹曼把麦克斯韦速度分布律推广到气体分子在任意力场中运动的情形。在这种情况下,应考虑到分子的总能量ε=εk+εp,这里εk是分子的动能,εp是分子在力场中的势能。同时,由于一般说来势能随位置而定,分子在空间的分布是不均匀的,需要指明分子按空间位置的分布,即要指出位置坐标分别在x到x+dx,y到y+dy,z到z+dz区间内的分子数或百分比,这里dxdydz叫位置区间,而dvxdvydvz叫速度区间。这样,一般讲来,从微观上统计地说明理想气体的状态时,以速度和位置表示一个分子的状态就需要指出其分子在dvxdvydvzdxdydz所限定的各个状态区间分子数或百分比
玻耳兹曼把麦克斯韦速度分布律推广到气体分子在任意力场中运动的情形。在这种情况下,应考虑到分子的总能量ε=εk+εp,这里εk是分子的动能,εp是分子在力场中的势能。同时,由于一般说来势能随位置而定,分子在空间的分布是不均匀的,需要指明分子按空间位置的分布,即要指出位置坐标分别在x到x+dx,y到y+dy,z到z+dz区间内的分子数或百分比,这里dxdydz叫位置区间,而dvxdvydvz叫速度区间。这样,一般讲来,从微观上统计地说明理想气体的状态时,以速度和位置表示一个分子的状态就需要指出其分子在dvxdvydvzdxdydz所限定的各个状态区间分子数或百分比
除了提出玻耳兹曼分布律之外,他还对热力学第二定律做出统计解释,建立了熵 ... 在能量越大的状态区间内的分子数越小,而且随着能量的增大按指数规律急剧地减小。 ... 分子的质量μ越大,重力的作用越显著,n的减小就越迅速;气体的温度越高,分子 ...
No comments:
Post a Comment