[1] Shannon C E. A mathematical theory of communication
[J ]. Bell Systems Technical J , 1948 , 27(3) : 3792428.
[2] Jaynes E T. Information theory and statistical mechanics
[J ]. The Physical Review , 1957 , 106(2) : 6202630.
[3] Aida C G, Lazo V, Rathie P N. On the entropy of
continuous probability distributions[J ]. IEEE Trans on
Information Theory ,1978 , 24(1) : 1202122.
[4] Alexis De Vos. The entropy of a mixture of probability
distributions[J ]. Entropy , 2005 , 7(1) : 15237.
[5] Thomas M U. A generalized maximum entropy principle
[J ]. Operations Research , 1979 , 27(6) : 118821196.
[6] Kullback S, Leibler R A. On information and
sufficiency[J ]. The Annals of Mathematical Statistics,
1951 , 22(1) : 79286.
[7] Kesavan H K, Kapur J N. The generalized maximum
entropy principle[J ]. IEEE Trans on Systems , Man and
Cybernetics , 1989 , 19(5) : 104221052.
[8] Alhassid A N , Levine R D. An algorithm for finding the
distribution of maximal entropy[J ]. J of Computational
Physics , 1979 , 30(2) : 2502259.
[9] Mead L R, Papanicolaou N. Maximum entropy in the
problem of moments[J ]. J of Mathematical Physics,
1984 , 25(8) : 240422417.
[10] Zellner A, Highfield R A. Calculation of maximum
entropy distributions and approximation of marginal
posterior distributions[J ]. J of Econometrics, 1988,
37(2) : 1952209.
[11] Ormoneit D, White H. An efficient algorithm to
compute maximum entropy densities[J ]. Econometric
Reviews , 1999 , 18(2) : 1272140.
[12] Abbas Ali E. Entropy methods for joint distributions
in decision analysis[J ]. IEEE Trans on Engineering
Management , 2006 , 53(1) : 1462159.
[13 ] Michael R , Eric J . Entropy densities with an
application to autoregressive conditional skewness and
kurtosis[J ]. J of Econometrics , 2002 , 106 (1) : 1192
142.
[14] Barron H , Schmidt C P. Senstivity analysis of additive
multiattribute value models[J ]. Operations Research ,
1988 , 36(1) : 1222127.
[15] Soofi E S. Generalized entropy2based weights for
multiattribute value models[J ]. Operations Research ,
1990 , 38(2) : 3622363.
[ 16 ] 姜丹 , 钱玉美. 效用风险熵[J ]. 中国科技大学学报 ,
1994 , 24(4) : 4612469.
(Jiang Dan , Qian Yu2mei. Effect risk entropy[J ]. J of
China University of Science and Technology , 1994 , 24
(4) : 4612469. )
[17 ] Lehrer E , Smorodinsky R. Relative entropy in
sequential decision problems[J ]. J of Mathematical
Economics , 2000 , 33(4) : 4252439.
[18] Candeal J C, De Miguel J R, Indur’Ain E, et al.
Utility and entropy[J ]. Economic Theory, 2001, 17
(1) : 2332238.
[19] Abbas A E. Entropy methods for adaptive utility
elicitation[J ]. IEEE Trans on Systems, Man and
Cybernetics — Part A , 2004 , 34 (2) : 1692178.
[20] Abbas A E. Maximum entropy utility[J ]. Operations
Research , 2006 ,54(2) :2772290.
[21] Yang J P , Qiu W H. A measure of risk and a decision2
making model based on expected utility and entropy
[J ]. European J of Operational Research , 2005 , 164
(3) : 7922799.
[22] Darooneh A H. Utility function from maximum
entropy principle[J ]. Entropy , 2006 , 8(1) : 18224.
[ 23 ] 岳超源. 决策理论与方法 [M]. 北京 : 科学出版社 ,
2003.
( Yue Chao2yuan. Decision theory and method[M].
Beijing : Science Press , 2003. )
[ 24 ] 邱菀华. 管理决策与应用熵学[M]. 北京 : 机械工业出
No comments:
Post a Comment