W及Z玻色子[编辑]
维基百科,自由的百科全书
组成 | 基本粒子 |
---|---|
系 | 玻色子 |
基本相互作用 | 弱相互作用 |
理论 | 1967年 (温伯格,萨拉姆) |
发现 | 1983年(UA1和UA2合作组) |
质量 | W: 80.398±0.025GeV Z: 91.1876±0.0021GeV |
自旋 | 1 |
W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子則半幽默地因是“最後一個要發現的粒子”而名。另一個說法是因Z玻色子有零(Zero)電荷而得名。
基本性質[编辑]
W玻色子有兩種,分別有 +1(W+)和−1(W−)單位電荷。W+是W−的反粒子。而Z玻色子(Z0)則為電中性的,且為自身的反粒子。這三種粒子皆十分短命,其半衰期約為秒。這些玻色子在各種基本粒子之中屬重型的一類。W的質量為80.399 ± 0.023 GeV,而Z則為91.1876 ± 0.0021 GeV。它們差不多是質子質量的一百倍——比鐵原子還要重。玻色子的質量是十分重要的,因其限制了弱核力的相用範圍。相對地,電磁力的相用範圍無限遠因為光子無質量。
弱相互作用[编辑]
W和Z玻色子是传递弱相互作用的媒介粒子,就像光子是传递电磁相互作用的媒介粒子一樣。W玻色子在核衰變過程中擔任一個重要的角色。以鈷-60的β衰變為例,- ,
W和Z玻色子的預測[编辑]
於1950年代量子電動力學的空前成功後,科學家希望為弱核力建立相似的理論。於1968年,這個論調在統一電磁力和弱核力後達到高潮。提出弱電統一的谢尔登·格拉肖、史蒂文·温伯格和阿卜杜勒·萨拉姆因此得到1979年的諾貝爾物理學獎[1]。他們的弱電理論不止假設了W玻色子的存在來解釋β衰變,還預測有一種未被發現的Z玻色子。W和Z玻色子有質量,而光子卻沒有——這是弱電理論發展的一大障礙。這些粒子現時以一個SU(2) 规范理論來精確描述,但理論中玻色子必定無質量。譬如,光子無質量是因為電磁力能以一個U(1)规范理論解釋。某些機制必須破壞SU(2)的對稱來給予W和Z玻色子的質量。其中一個解釋是由彼得·希格斯於1960年代晚期提出的希格斯機制。它預言了一種尚未發現的新粒子——希格斯玻色子。
SU(2)測量儀理論、電磁力和希格斯機制三者的組合稱為格拉肖-温伯格-萨拉姆模型。它是目前廣泛接受為標準模型的一大支柱。至2003年為止,標準模型唯一未被實驗證實的預言只有希格斯玻色子。
W和Z玻色子的發現[编辑]
W和Z粒子的發現是歐洲核子研究組織的主要成就之一。首先,於1973年,實驗觀察到了弱電理論預測的中性流作用;那時加尔加梅勒的氣泡室拍攝到有一些電子突然自行移動的軌跡。這些觀測結果被詮釋為中微子藉由交換沒有軌跡的Z玻色子與電子互相作用。由於中微子是偵測不到的,因此實驗中只能看到電子因著交互作用而造成的動量改變。W和Z粒子要到能量夠高的粒子加速器建立後才正式被發現。第一部這樣的加速器是超級質子同步加速器,其中卡洛·鲁比亚和西蒙·范德梅尔在1983年一月進行的一連串實驗給出了明顯的W粒子證據。這些實驗稱作“UA1”(由鲁比亚主導)和“UA2”,且為眾多人合作的努力成果。范德梅尔是加速器方面的驅策者(隨機冷卻)。UA1和UA2在幾個月後(1983年五月)找到Z粒子。很快地鲁比亚和范德梅尔因而得到1984年的諾貝爾物理學獎[2],這可算是保守的諾貝爾獎基金會自成立以來相當不尋常迅速的一次。
No comments:
Post a Comment