Monday, April 28, 2014

qft01 white01 测度 infomation 非粒子长程力,它不存在色散关系的约束(因而不是粒子, 粒子的能量8、动量+间存在二次型约束); 电荷并不会产生电场,而是因为和电场耦合,从而改变了电场——把电磁场从我们称之为“真空”的状态(这种状态我们以前认为是“没有场”的状态)变成另一种状态。


电荷并不会产生电场,而是因为和电场耦合,从而改变了电场——把电磁场从我们称之为“真空”的状态(这种状态我们以前认为是“没有场”的状态)变成另一种状态。

管中窥豹之非交换几何

!""#:$$%%%&%’()&*+&+,------------------物理・./卷(0112年)3期


研究快讯
非粒子交换导致的长程作用力!
廖-益4
(南开大学物理系-天津-.111/5)
摘-要--最近,6789:)建议了一种客体———非粒子,它不存在色散关系的约束(因而不是粒子),却受所谓的标度量纲控制&文章作者指出,它与粒子相互作用会导致粒子间新奇的长程力&这种力与人们熟知的长程力完全不同,在人们已设想到的任何新物理中也没有这样的长程力&如果在未来的精确测量中发现了这种力,这将明确地指向非粒子物理,从而对粒子物理学的基本概念产生重要影响&另方面,利用现有的精确观测的电子自旋;自旋长程作用,文章作者得到了对电子与非粒子相互作用的很强限制&对该领域的研究前景,文章中也作了简短的展望&关键词--非粒子,长程力,标度不变性
!"#$%&’#$()"&*()&"+,#-’&./*0((1*2’#$(
<=>?@)4
(!"#$%&’"(&)*+,-./0.,1$(2$/3(/4"%./&-,5/$(6/(.111/5,7,/($)
345.&’*.66A,#*9")+(7B*B97+7,"(CB’::7B"7DEC6789:)*97)D7,")")7B"!*"*97,8"+8,B"9*),7DECD)B#79B)8,97(*F")8,B(*,D*97"!’B,8"#*9")+(7B)E’"*97:8G79,7DEC"!7)9B+*(),:D)H7,B)8,&I7B!8%"!*""!7)9+8’#(),:"8#*9F")+(7B97B’("B),,8G7((8,:F9*,:7J89+7BE7"%77,#*9")+(7B"!*"*97"8"*((CD)JJ797,"J98HK,8%,8,7B89"!8B7*9)B),:),*,C8"!79,7%#!CB)+B+8,"7H#(*"7DB8J*9&=JB’+!J89+7B%797D)B+8G797D),J’"’97#97+)B)8,H7*B’97H7,"B)"%8’(D#8),""8’,#*9")+(7#!CB)+B’,*HE):’8’B(C,*,D"!’B)H#*+"B):,)J)+*,"(C"!7E*B)++8,+7#"B8J#*9")+(7#!CBF)+B&?,"!78"!79!*,D,%7’B7"!77L)B"),:#97+)B7(CH7*B’97D(8,:F9*,:7B#),FB#),),"79*+")8,8J7(7+"98,B"8B7"B"9),:7,"E8’,DB8,"!7’,#*9")+(7+8’#(),:"8"!77(7+"98,&I7*(B8H7,")8,E9)7J(C"!7#98B#7+"BJ8997B7*9+!),"!)BJ)7(D&
7(89"&:566’,#*9")+(7,(8,:F9*,:7J89+7,B+*(7),G*9)*,+7
!-本文应
《物理》编辑部邀请撰写,以通俗语言介绍发表M!CB&N7G&<7""&,011/,OO:5O521P一文,只列出主要文献011/;50;5.收到4-QH*)(:()*8CR,*,K*)&7D’&+,
5)-在电磁、弱、强相互作用的统一理论———粒子物理标准模型中,
强作用也是通过零质量的量子传递的&但由于强作用的荷(称之为色,相当于电磁作用的电荷)不能单独、自由地存在(色禁闭),我们观测到的比如核子间的强作用并不是长程力
5-引言
万有引力和库仑力是我们仅知的长程作用力&它们具有宏观尺度的力程,并遵从距离平方反比律&自然界中是否存在别的长程力?是否存在平方反比律以外的长程力?由于这是一个基础性的重要问题,物理学家们从理论和实验方面进行了长期不懈的探索&
量子场论是建立在狭义相对论和量子论基础上的、描述相互作用的理论框架&按照量子场论的观念,相互作用或力是通过力的载体(称之为力的量子或粒子)传递的,而长程力是质量为零的量子导致的&比如,引力子传递引力作用,而光子传递电磁
作用5)
&长程力的平方反比律是相互作用在低速极限下的主要特征;它源于两个基本事实&其一,所有粒子(包括力的量子)都满足一个色散关系,即:粒
子的能量8、动量+间存在二次型约束,809+000:
’00P&这里,常数0是光速,’则是粒子的质量&其二,我们生活在一个三维的物理空间&当然,如果相互作用的粒子有自旋,或者,如果我们计入很小的相对论性效应或量子论修正,力的长距离行为与平方反比律会有很小的偏离,但这些偏离总是距离的负整数次幂&有趣的是,即使在


!物理・"#卷($%%&年)’期!!!!!!!!!!!!!())*:++,,,-,./0-12-23
也是距离的负整数次幂$)-这样就自然产生了一个疑问:自然界不可能存在别的形式的长程力吗?一个比较简单、看上去也不怎么奇怪的形式似乎是距离的负的非整数次幂-什么样的量子能传递这种力?前述分析告诉我们,它不可能是粒子!在通常的量子场论中,粒子是作为场的量子激发而自然出现的;因此,这样的回答看起来很奇怪-其实,产生这一印象倒不是因为这种形式的长程力太离奇,而是因为我们太习惯于粒子这样的基本物理概念,以至于很难偏离哪怕是一小步-最近,456780基于理论上的设想,建议了一种新客体,因为不是粒子,他称之为.3*17)02/5(本文暂译
为非粒子)[9]
-这项建议立即引起了广泛注意和研究-人们发现非粒子会产生一些不寻常的物理后果")-因为我们关于相互作用的知识都是通过粒子的实验研究获得的,非粒子的物理理论自然应该包括它与粒子间的相互作用-本文将主要介绍非粒子
与粒子的相互作用所导致的粒子间长程力[$]
-该长程力一般具有距离的负非整次幂形式-由于目前实验上尚未发现这种力,我们可以对非粒子与粒子的相互作用给出很强的限制-如果在未来的实验中发现了这种力,这将是存在非粒子的特征性证据,因为如上所述,通常的粒子理论产生不了这种长程力,而这可能导致基础理论的深刻变化




首先,提供勘误链接,还有Clarifications。这份笔记中也会提到一些勘误。

这本书的书名叫“QFT in a nutshell”,直译过来应是《果壳中的量子场论》。现在有很多书名字都叫《果壳中的……》,据徐教授说,这类名字是他首创的。

场量子化有三种方法:比较常见的(比如说Peskin的书中一开始用到的)是正则量子化方法;本书则从路径积分方法讲起。(还有种方法我忘了。)I.2回顾了量子力学中的路径积分方法。

高斯积分

路径积分方法中经常要用到的数学运算:高斯积分,收录在Appendix 1中。其中出现的重要概念是Wick contraction,在P13的最后。求的平均值,得到的结果是,这个结果可以理解成6个两两收缩,并对所有可能的收缩求和(后文中出现的即表示这个求和)后得到的结果。每两个收缩得到的结果是,共有三对,即。可能的收缩方式有种,于是就得到。P15的Eq. (16)是Eq. (10)的推广,Eq. (18)是一个具体例子。在这里,Eq. (18)的意义是求矢量的4个分量的乘积的平均值,这样的说法比较难理解。实际上,这样的运算是用来求格林函数的。比如P47的Eq. (10),如果令,得到的自由传播的四点格林函数形式和P15的Eq. (18)一致,其物理意义是两个粒子传播的几率幅:等号右边第一项表示粒子1从坐标传播到坐标的几率幅(等于),乘以粒子2从坐标传播到坐标的几率幅。由于粒子的全同性,粒子1的末坐标也可能是,于是粒子2从坐标传播到坐标。另外还有第三种可能。把三种情况相加,就得到了两个粒子传播的总几率幅。

量子力学中的路径积分

量子力学中,粒子在两点间的运动没有确定的轨道。对于“没有确定的轨道”,一般人就直接理解成“没有轨道”了,而Feynman独辟蹊径,理解成“有许多条(事实上,是无限条)轨道”。路径积分的思想是:对于从一点运动到另一点的任意一条轨道(用描述粒子运动的轨道),可以用算出这条轨道的几率幅。其中是作用量。粒子在两点间运动的总几率幅就是所有可能的轨道的几率幅之和。在经典极限下,相比是巨大的,路径的微小改变会造成几率幅的剧烈振荡,使得临近路径的总几率幅会相互抵消掉。只有在取极值的路径附近几率幅不能抵消,这就是可以通过最小作用量原理求出的经典路径。

量子场论中的路径积分

量子力学中的研究对象是粒子,用坐标描述,量子场论中的研究对象则是场。所谓“场”,其实是一个数学概念。给定一个流形...或者不用“流形”这样的名词,我们生活的这个宇宙,每一点都可以用时间-空间四维坐标来描述。在每一个时空点之上都给定一个数,就得到了一个标量场。(也可以在每一点上给定一个矢量,得到矢量场;还可以得到张量场等等。)当然,在场论中研究的场,都是一些有物理意义的动力学函数。

给定一个场,对不同的不同,对时间的偏导数是场的动能;对空间的不同点,也不同,在场论中,对空间坐标的偏导数是场的动能。(其实应该是场的动量。但动能和动量实际上是同一四维矢量的分量。)总之,场的动能源于场在时空中的“变化”。除此之外,场自身也有相互作用,称为势能。比较重要的势能项,有,其大小和场的平方成正比,系数表征这项作用的强弱。这项势能是场因为自身存在即具有的能量。因为能量即质量,可见其实就是我们熟悉的[静止]质量。还有一个重要的势能项是和成正比的。玻色气体中,每两个气体原子之间具有相互作用,假设相互作用能量是。对于有个原子的玻色气体,总相互作用能量就是很大时约等于。考虑到,玻色气体原子之间的相互作用其实就是相互作用。

知道了场的动能和势能,就能写出拉格朗日量以及作用量,即P17的Eq. (5)。同样,可以算出这个场的几率幅。量子场论中的路径积分方法是:认为所有的场函数都是可能出现的,计算出所有的几率幅,把它们相加,得到一个总几率幅。

和量子力学中类似,如果做微小变化,一般来说,会导致几率幅的剧烈振荡,使得“相邻”的贡献的几率幅会相互抵消——除非在作用量取极值处。因此,在场论中,同样可以用最小作用量原理,求出“实际出现的”场。对于标量场,这个“实际出现的”场满足Klein-Gordon方程。

源对场的作用

后文开始,保持和书上用的记号一致,用代替

如P20所述。源会和场耦合,使得场和无源时不同。其原因在于源与场的耦合会改变场的能量,(比如说真空中放入一个电子,就会改变电磁场的能量,)从而改变场的几率幅。作用量取极值的场也会相应地变化。

这里有个观念上的变化。初次接触场,应该是中学里学到的电磁场。那时候,场被描述为源“产生”的东西,比如说电荷产生电场,电流产生磁场等。而按场论的观点,电荷和电场,一个是spin-1/2 Dirac场,一个是spin-1 电磁场,完全是两样东西。电荷并不会产生电场,而是因为和电场耦合,从而改变了电场——把电磁场从我们称之为“真空”的状态(这种状态我们以前认为是“没有场”的状态)变成另一种状态。

Wick转动P12提到了Wick转动,是对时间轴做一个的变换,其目的是把度规从闵氏的变成欧氏的,这样,在做积分时,可以“平等地”对待四个坐标,从而简化积分运算。有个需要注意的地方:变换不能是,尽管这个变换也能达到同样的目的。其中的原因可以参考P23的Eq. (22):积分项的奇点在复平面的第二、四象限,Wick转动要避开奇点,因此只能是



管中窥豹之非交换几何
新用户注册 | 用户登陆 | 刷新
季候风

发表文章数: 262
内力值: 310/310
贡献度: 3398
人气: 154
论坛嘉宾学术成员
标题: 管中窥豹之非交换几何
作者: 季候风
最近看到一本 Max-Planck 研究所的讲义: A walk in the noncommutative garden. Alain Connes 和 Matilde Marcolli 写的. 大师当然是闲庭信步了, 我就勉强算是管中窥豹吧, 不过也许连根毛都没看到......还是希望有同修讨论讨论. 涉及到物理的部分可能会犯很多错误, 希望同修们不吝赐教.

历史上第一个非交换几何的例子当推 Heisenberg 关于光谱学中 Ritz-Rydberg 组合原理的见解. 这个原理是说, 一个原子的光谱里面, 某些谱线的频率相加正好是另一些谱线的频率, 但并非随便拿出两条谱线来, 其频率之和都是另一谱线的频率. Bohr 用定态假设和跃迁假设解释了这个原理, 但是背后的动力学原理却不清楚, 而且不能预言辐射的强度和偏振.

Heisenberg 首先用牛顿力学和 Mexwell 理论研究了一下氢原子的辐射问题, 说明了在这个模型下, 辐射有一组基频, 而每个平面波分量的频率是这些基频的整系数线性组合 --- 这说明所有可能的频率组成一个加法群, 任何两个谱线频率相加必然是第三条谱线的频率. 这显然不符合 Ritz-Rydberg 组合原理.

Heisenberg 决定抛弃经典概念而只研究 "可观察量", 即所有谱线组成的集合上的函数 --- 这些函数其实是真实物理量的 Fourier 系数. 所以物理量之间的乘法是这些系数(作为谱线集上的函数)之间的卷积(卷积运算本身要求集合上的群结构). 然而, Ritz-Rydberg 组合原理告诉我们, 所有谱线的集合不是一个群, 而只是一个群胚 (groupoid). 借用 Bohr 的话来说, 每条谱线是从 n 能级到 m 能级的跃迁引起的辐射. 对群胚上的函数也可以类似地定义卷积, 但这个卷积再也不是交换的了 --- 比如谱线的集合这个群胚, 每条谱线由两个整数 (n,m) 代表, 所以谱线集上的函数实际上是矩阵 q(n,m), 而这个群胚上的卷积正好就是矩阵乘法 --- 注意这些矩阵是真实物理量的 Fourier 系数, 它们的卷积对应到真实物理量的乘法. 这样 Heisenberg 不得不下结论说, 真实的物理量一定不是普通的函数 (c数), 而是一些非交换的东西(q数), 因为普通函数的 Fourier 系数必须是群上的函数, 而事实上可观察量的 "底空间" 却是一个群胚.

应该注意的是, 这并不是数学家的马后炮, 而只是用数学的语言把 Heisenberg 原始的想法写出来而已.

研究非交换几何一个很直接的动机(并不一定是 Connes 的动机)要追溯到 Gelfand 关于 Banach 代数的研究. 一个交换的 Banach 代数对应于一个紧致拓扑空间, 叫做这个代数的 "谱" (spectrum), 这个代数正好是这个紧致拓扑空间上的所有连续函数形成的代数. 这种 代数-几何 对应被 Grothendieck 在代数范畴里发展到了极至.

一个自然的想法就是把这种对应推广到非交换的对象. 在代数范畴的推广就是所谓非交换代数几何, 在拓扑范畴的推广一般笼统称为非交换几何. Alain Connes 从某一类 Banach 代数 --- von Neumann 代数的研究出发看待整个非交换几何.

von Neumann 代数跟物理有密切关系. 从某种意义上来说这很明显, 因为 Banach 代数都可以被实现为 Hilbert 空间的算子代数, 从而可能是某个物理系统的可观察量形成的代数. 事实上还有更直接的关系. 涉及到量子统计力学.

统计力学研究一个由大量原子组成的复杂物理系统. 这个系统的状态很难细致描述. 但是这个系统有很多宏观性质可以非常准确地描述. 所以我们有必要区分系统的微观状态和宏观状态. 宏观状态由有限个参数(温度, 压强, 极化等等)描述, 微观状态由大量的动力学参数描述. 这个系统具有统计性质是因为对于微观态的信息缺失 --- 不同的微观态可能给出完全相同的宏观态, 这时我们说这两个微观态有同等概率描述系统真实的状态.

为了对这个复杂系统进行定量研究, 我们需要假定宏观物理量是微观物理量对于某个 "系综" (微观态的概率分布) 的平均值. 然而系统在某一时刻实际上确定地处于某个微观态, 只是我们不知道关于这个微观态的信息. 所以系综的使用是有条件的, 这就是 "遍历假设", 就是说, 微观物理量在某个微观运动态下的时间平均应该可以等同于在某一固定时刻对于一个系综的平均. 我们其实还需要进一步假设实现遍历的时间间隔足够小, 小于我们测量这个系统的宏观物理量所需要的时间. 遍历假设实际上给出了一个对应:
(微观态时间演化 <----> 系综). 热平衡系统的 Boltzmann 分布就是这么一个例子, 这个分布的密度函数就是 exp(bH), 其中 b 定义了这个热平衡系统的温度, 而 H 就是控制时间演化的 Hamilton 函数.

在热力学极限下(粒子数趋于无穷), 这种对应(遍历假设)再也不成立了, 但是它们之间还是有一定的关系, 在量子统计学中叫做 Kubo-Martin-Schwinger 条件, 微观态的时间演化 a_t 和一个量子系综 E 满足这个条件当且仅当对任意两个可观察量 A, B 存在一个在条带 R * [0, hb] 上的全纯函数 F, 使得 F(t)= E[A a_t(B)], 而 F(t+ i hb)= E[a_t(B) A]. 其中 h 是 Planck 常数, b 定义了这个系综的温度.

而在 von Neumann 代数理论中, 这个 Kubo-Martin-Schwinger 条件比较自然地出现. von Neumann 代数是由 Hilbert 空间上某些有界算子组成的. 这个代数的一个态就是 Hilbert 空间里的一个向量 x, 代数里的元素 A 对于这个态的平均值是 <x|A|x>. 对于每个态 x, 可以定义这个代数的一个单参数自同构群 S_t. 这个单参数同构群跟态 x 正好满足 hb=1 的 Kubo-Martin-Schwinger 条件.

Gelfand 已经告诉我们一个紧致拓扑空间 X 对应到一个交换的 Banach 代数, 就是 X 上所有连续函数组成的代数 C(X). 如果我们在 X 上有一个等价关系 R, 我们可以做商空间 Y = X/R. 这个商空间的商拓扑可能很糟糕, 比如, 它可能不是 Hausdorff 的. 我们希望存在相应的 Banach 代数 "C(Y)", 而且它可以由 C(X) 做某种代数上的操作得到. 由下面一些例子我们可以看到, 如果要得到一些不平凡的信息, 我们就被自然地带到非交换的范畴.

先看一个最简单的例子: X = {a, b}. 那么 C(X) = C "+" C, 这里的 "+" 表示代数的直和, C 表示复数域作为自身上的一维代数. 更好的写法是用矩阵:

C 0
0 C

现在, 如果我们有等价关系 aRb, 即, 我们把这两个点等同起来, 那么有两种看法可以得到商空间对应的代数, (1) 取在等价关系下不变的函数, 即所有函数 f 使得 f(a)=f(b), 所以是常数函数, 这个意义下的 C(Y) = C. 可能有点太平凡了, 并没有反映出 Y 是通过等同 X 中的两点得到的这个 "商" 过程; (2) 把对角矩阵组成的代数扩张到整个 2 x 2 矩阵代数 M_2(C). 这是一个单代数, 只有一个极大理想 0. 所以它的谱正好就是 Y, 所以它是 "C(Y)" 的一个可能的选择.

显然第二种看法会保留更多的信息. 但是我们必须要有直观的几何解释, 要不然这种推广就太过任意. 这个几何解释就是, M_2(C) 是等价关系 R 的图像上所有连续函数组成的代数. 在这个简单情况下, R 的图像是离散的, 包括四个点 (a,a), (a,b), (b,a), (b,b), 其实也就是笛卡儿积 X x X. 这个图像上的一个连续函数就是一个 2 x 2 矩阵( a,b 是脚标). 这样我们给了矩阵一个几何解释. 矩阵之间的乘法可以解释为在 R 这个群胚上的卷积 ( 一个等价关系自然是一个群胚. Heisenberg 已经告诉我们怎样在群胚上做卷积了).

回忆 Heisenberg 怎样得到他的q数, 就是把 Fourier 系数解释为 {所有谱线} 这个群胚上的函数而非通常情况下的 {所有整数} 这个交换群上的函数. 现在, Connes 所做的是把商空间 Y 加强为定义这个商空间的等价关系 R, 而把非交换的 C(R) (R 上的函数以对 R 的群胚结构的卷积作为乘法) 作为商空间 Y 所对应的 Banach 代数.

这种处理可以推广到拓扑流形. 一个紧致拓扑流形 M, 如果我们取定一个有限开覆盖 {U_i}, i=1,...,m. 那么 M 可以看做一个商空间 --- 设 X 为 U_i 的无交并, 等价关系 R 就是 U_i 之间的粘合. 大家现在可以想象一下 R 的图像 (作为 X x X 的子空间). 其实这个图像就是所有 (U_i 交 U_j) 的无交并, 从而 C(R) 中每个元素可以写成一个 m x m 矩阵, 其 (i,j) 元是 (U_i 交 U_j) 上一个在边界趋于零的连续函数. C(R) 的乘法就是矩阵乘法, 而矩阵元 f(i,j) 和 g(j,k) 的乘积显然是 (U_i 交 U_k) 上消失在边界的函数. 所以乘法是定义好的.

当然, 这种构造必须要有好处, 要不然我们就白白牺牲了交换性这么好的性质. 这个构造最表面的好处就是, 一旦我们有 M 的一个开覆盖了, 我们不用理会 M 的任何整体性质就能构造出 C(R), 所涉及到的只是开覆盖的组合结构. 这就像用 Cech 上同调一样, 在某些情况下会方便很多.

理解 Connes 关于测度论的描述花了不少时间。测度的概念看似简单,但比较深入的思考让我意识到以前的理解有多么肤浅。当然,认识到自己肤浅并不代表现在就不肤浅,Connes 的好多议论还是让我一头雾水。

测度是长度,面积,体积,概率这些古典数学概念在二十世纪的统一的建立在集合论基础上的表述。Lebesgue 本人的动机是为了定义积分,所以现在普遍接受的观点是,要定义一种积分,首先要定义一个测度。比如 Riemann 积分对应于 Jordan 测度,Stieltjes积分对应于推广的 Jordan 或者 Lebesgue 测度,一些随机积分对应于 Wiener 测度,等等。(说到这里,应该提一下,为了给物理学中常用的路径积分建立一个数学基础,也许需要推广现有的测度概念,这当然也是 Connes 建立非交换几何这个框架的动机之一。)

在一个测度空间 X 上,有一个自然的交换 C* 代数,就是 L^无穷,所有 X 上本性有界的可测函数组成的空间,上面的乘法就是函数之间的点点乘法。有意思的是,所有的交换 C* 代数都可以实现为某个测度空间的 L^无穷。(这是一个深刻的定理,在寻找这个定理证明的过程中我接触到了所谓一般表示论,获益匪浅。)这个定理说明,经典的测度空间对应到交换 C*代数。

很自然的想法是,非交换的 C* 代数会不会是测度论的自然推广呢?Connes 认识到,这并不是空泛的推广,而有着深刻的经典几何背景。在各个几何分支里面,对于商空间的研究都产生出漂亮的理论,比如几何不变量理论,辛商空间,等变上同调等等。商空间可能会有很坏的性质,比如一个流形的商空间可能不仅不是流形,甚至都不是 Hausdroff 的,或者一个代数流形的商空间可能不再是代数流形。在测度论意义下,一个测度空间的商空间可以坏到无法谈论测度的地步。

一个非常有趣的例子就是环面 T 上的无理流。环面可以看作由所有经线组成,或者看成由所有纬线组成,数学上把这种结构叫“分叶”。现在我们来看环面上其它一些曲线。有一些曲线,绕经圆 p 圈,绕纬圆 q 圈,我们把这种曲线叫做斜率为 p/q 的曲线,所有这些曲线也组成整个环面。这个分叶叫做“有理流”。(之所以叫“流”是因为这些曲线可以看作环面上某个微分方程的积分曲线。)现在斜率的概念已经很直观了,所以我们可以看看斜率为无理数的那些曲线。这些曲线不是闭合的---环面上的闭曲线必然绕经圆和纬圆整数次。实际上这些曲线同胚于直线。固定斜率 m, 所有这个斜率的曲线也组成整个环面,这个分叶叫做“无理流”。它的动力学可以从它同一个经圆的相交看出来:这样一条曲线每绕纬圆一周,就绕经圆 m 周,也就是说,连续两次同一个经圆的交点相差 2pi m 的距离。由于 m 是无理数,所以交点永远不会重复,而且根据 Poincare 回归定理,交点会无限次回到任意小邻域,所以交点会稠密地分布在这个经圆上。

如果我们想看看这个分叶的所有“叶子”的空间 X,也就是说,把每条斜率 m 的曲线看作一个点,组成一个空间,它是原来环面的一个商空间。X 上的一个可测函数应该对应于环面 T 上一个在每片叶子上为常数的可测函数,也可以看作经圆上的一个可测函数,在跟同一片叶子的所有交点上取值相同。但是根据回归性质,这样的函数必然几乎处处跟一个常数函数相等。所以说,这个商空间上的测度性质是平凡的。学过实变函数的同修也许会认识到这跟“不可测集”有点关系---如果在每一片叶子上取一个点组成 T 的一个子集(根据选择公理这个子集存在-所有叶子的笛卡儿积非空,从而非空),那么我们得到的是一个不可测集。

那么这种商空间到底有没有跟测度论类似的结构可以研究呢?Connes 告诉我们,有,就是从这个分叶构造出的非交换 C* 代数。这个构造的原理我们在最简单的例子(两个点被等同为一个点)里面已经看到了。分叶是一个等价关系,两个点等价如果它们在同一片叶子上。等价关系决定了一个群胚,这个群胚上的函数在卷积下形成一个非交换 C* 代数。对于环面上的无理流,这个非交换的 C* 代数就是著名的“非交换环面”。

如果这个分叶比较好,比如环面 T 上的有理流,以至于商空间 X 上有非平凡的测度论,那么以上构造的这个 C* 代数就有一个中心子代数,正好同构于 X 上的 L^无穷 函数代数。这说明如此构造的 C* 代数的确是经典测度论的一个推广。

[附录一] 也许我应该更仔细地解释一下群胚的概念. 以 Ritz-Rydberg 原理为例子, 记从 n 能级到 m 能级的跃迁发射光子的频率为 v(n,m), 那么 v(n,m)+ v(m,l) = v(n,l). 但是 v(n,m) + v(l,k) (m 不等于 l) 就不是另一条谱线的频率. 所以群胚就好像一个 "图", 顶点之间有箭头, 这些箭头就是群胚里的元素, 它们能乘起来当且仅当一个箭头的终点是另一个箭头的起点。群就是只有一个顶点的群胚, 这样所有的元素都能相乘。从对群胚的描述来看, 它不仅是一个集合 (箭头的集合), 还需要指定每个箭头是从哪个顶点到哪个顶点的. 所以群胚最好被视为一个范畴而不仅仅是一个带有运算的集合.

[附录二] 遍历假设并不意味着 (微观时间演化 <---> 系综) 这个对应. 这个对应只对热平衡态有效 ... 经典情况, Boltzmann 分布就是这种对应的所有例子. 量子统计, 在有限粒子情况, 有 Boltzmann 分布的类似物, Hamilton 量决定了分布, 但是在热力学极限 Hamilton 量不能决定分布, 可能有多个分布都反应微观态的时间演化. Kubo-Martin-Schwinger 条件就是对唯一性失效的补偿.

No comments:

Post a Comment