Sunday, January 19, 2014

lu01 ren01 重整化群函数 - 后来被称为 β-函数 - 的正定性,对它的贡献来自于所有粒子可能衰变到的虚粒子态

重整化群函数 - 后来被称为 β-函数 - 的正定性

这看起来象是一种重大的对称性, 但其实际用途却仅限于一种情形 - 尽管那是一种极其重要的情形。 人们发现只有标度变换才与重整化群相关。 这是重整化群的一维子群, 也是今天仍在使用的唯一类型。
1954 年, M. Gell-Mann 与 F. Low 注意到在可变能标 μ 的标度变换下精细结构常数 α 的重整化群变换可以被计算出, 他们发现
μdα/dμ = O(α2) > 0
(1.3)
在微扰展开中, (1.3) 式右端的函数是关于 α 的 Taylor 级数, 以 α2 项居首。
在莫斯科, L. Landau 预期这一函数为恒增函数, 因此 α(μ) 应该是一个关于 μ 一开始缓慢增长 (因为 α(1MeV) 很小), 而后逐渐转为爆炸式增长的递增函数。 即便 (1.3) 式中的级数终止于 α2 项, α(μ) 仍会在有限的 μ 处具有奇点。 这一奇点被称为 Landau 奇点 (Landau pole), 它看来是一个在物理上难以令人接受的东西。 这就是为什么 Landau, 以及与他持相同见解的一大批研究者视重整化量子场论为数学上错误的原因。
另一方面, Gell-Mann 与 Low 则猜测 (1.3) 式右端的函数可能会有零点。 在这种情况下, 跑动耦合常数 α(μ) 将会终止于某一数值, 该数值就是理论的裸耦合常数。 但是为了计算这一裸耦合常数, 人们必须跳出微扰理论的框架, 这在当时没人知道该怎么做。 因此尽管 Gell-Mann 与 Low 没有摒弃这一理论, 但他们的观点显然需要当时还不存在的数学技术来支持。 其结果是, 不仅在东欧, 而且在西欧, 许多物理学家相信量子场论的数学基础是破绽百出的。
将所有这些连接在一起的是这样一种信念, 即重整化群函数 - 后来被称为 β-函数 - 的正定性是不可避免的。 这种信念是基于传播子的所谓 Källen-Lehmann 表示:
D(k2) = ρ(m2)dm2/(k2+m2-iε);    ρ(m2)>0
(1.4)
函数 ρ(m2) 是正定的, 因为对它的贡献来自于所有粒子可能衰变到的虚粒子态 [译者注: 具体地讲 ρ(m2) 的表达式为 Σλδ(m2-mλ2)|<0|φ(0)|λ>|2, 显然是正定的]。 但 ρ 与 β 之间的关系并非显而易见这一事实却显然被忽略了。 可重整量子场论被视为是一种玩具理论, 一些研究者并且声称量子电动力学所取得的表观上的数值成就不过是一种巧合而已。

No comments:

Post a Comment