维基百科,自由的百科全书
在數學裡,拓撲熵是指在一個拓撲動力系統中的一個非負實數,可以用來測量此系統的複雜度。拓撲熵這個概念最先是於1965年由阿德勒、孔翰和麥克安德魯所提出來的。其定義是由測度熵中導出來的。之後,汀那伯格和洛福斯·鮑恩另給出了一個不同但等價的定義,將其延伸至豪斯多夫維。第二個定義釐清了拓撲熵的意義:對一個由迭代函數給出的系統,拓撲熵表示迭代不同軌道數的指數成長率。變分原理此一重要原理將拓撲及測度熵兩種概念相關連了起來。
則表示譯成 X 的點所需長度 n 的「詞」的最小數量,依據其頭 n-1 次迭代的行為,或另個角度來說,是由劃分 C 中「看到」迭代行為「方案」的總數。因此,拓撲熵即為描述映射 f 長迭代所需訊息的平均值。
定義[编辑]
拓撲動力系統包括一個豪斯多夫空間 X (通常假定為緊緻的)和一個連續自映射 f 。其拓撲熵是一個非負實數,可以等價地以許多方式被定義。阿德勒、孔翰和麥克安德魯的定義[编辑]
令 X 是一緊緻豪斯多夫空間。對任一 X 的有限覆蓋 C ,令 H(C) 為覆蓋 X 的 C 的最小元素數量的對數(通常底數為 2 )。對兩個覆蓋 C 和 D ,令解釋[编辑]
C 的各部份可能可以被視為是(部份地)描述了 X 上的點 x 的位置的符號:所有點 x ∈ Ci 都被配上符號 Ci 。想像 x 的位置被一特定儀器(不完美地)量測,且 C 的每個部份都會對應於量測的每個可能輸出。然後,整數
No comments:
Post a Comment