Saturday, April 19, 2014

tw01 chchang01 harvard01 波的色散關係是由波方程式給 E 代表自由粒子的能量 粒子的能量和动量关系,相速度(Phase velocity)和群速度(group velocity)

DOC]

XI Quantum Physics I

phy.ntnu.edu.tw/~chchang/Notes11b/GR-9-3-WaveEquation.doc
Wave Equation ... 一般來說,波的色散關係是由波方程式給定,所以由單頻率正弦波的色散關係出發,或許可以猜出在正弦波的情況下,能給出此色散關係的波方程式,將其 ... 但如果你嚐試用同樣的方法來處理物質波的色散關係,會出現一個大問題。
  • phymath999: E 代表自由粒子的能量。这说明·用运算符号址J ...

    phymath999.blogspot.com/2013/01/e-j-jt-e.html - 轉為繁體網頁
    2013年1月3日 - 下,粒子的能量和动量关系式是: 2 p E U r 2上式两边乘以波函数r t ... [DOC] ... phy.ntnu.edu.tw/~chchang/Notes11b/GR-9-3-WaveEquation.doc.

  •  
    色散关系
    编辑
    色散关系 (dispersion relation)通常指波传播过程的频率依赖现象(frequency-dependence)。在色散关系中,波速不再是唯一确定,而是引起 的分离。

    中文名
    色散关系
    外文名
    dispersion relation
    提出者
    克拉默斯(Kramers)
    提出时间
    1927年
    应用学科
    光学
                相速度(Phase velocity)和群速度(group velocity)


    1色散关系描述编辑

    不同的波长,在空间传播过程中波速不同。对于不同波长的混合波在空间的传播,波速将是波长的函数
    v=v(λ)
    色散关系定义了波长,波速与频率之间的关系:
    v(λ)=λf(λ)
    这里:v(λ)是波速,λ表示波长,f(λ)表示频率。
    色散关系的常见表示方法是应用角频率与波数定义的:
    ω(λ)=2πf(λ), k=2π/λ,从而色散关系可以表示为:ω(k)=kv(λ)
    这样定义的好处是很容易的得到相速度:ω(k)/k 和 群速度dω(k)/dk
    色散关系(dispersion relation)
    电磁波光波)通过媒质时,折射率和吸收率分别与媒质介电常数ε=ε1+iε2的实部ε1和虚部ε2直接相关,且与电磁波的频率有关,作为电磁波频率ω的函数,媒质介电常数的实部和虚部之间的普遍关系,称为介电函数的“色散关系”。采用傅里叶分析方法导出色散关系为:

    2定义追溯编辑

    这关系是克拉默斯(Kramers)于1927年首先从经典理论导出的,故又称经典克拉默斯关系,以区别从量子力学导出的色散关系。

    Chia-Hung Vincent Chang

          

    Address Information

    Physics Department National Taiwan Normal University, Taipei, Taiwan Telephone (02)7734-6038
    e-mail:
    chvchang@hotmail.com        chchang@phy03.phy.ntnu.edu.tw
     

    Associate Professor of the Physics Department

    I am an associate professor in the Physics Department of the National Taiwan Normal University. My research specialty is the theoretical physics of elementary particles and quantum fields, especially the phenomenology of the standard model, extra dimension physics and other beyond standard models.
    The following is my current interest and ongoing projects:
    1.    Extra Dimension Physics
    It has been a long held belief that the gravitational force is too feeble to have an impact on particle physics at the weak scale. But why is it so weak? The idea is to assume the existence of n compact extra dimension plus 4 noncompact spacetime. All the matters are to live in a three dimensional membrane, called brane, but the gravitational force line can escape into the n extra dimension. Assume that either n is large or the size of the extra dimension is large compared to particle size. For example n=2 and the size is about 0.1mm or n=3 and the size is 10-7 cm. Anyway, the gravity field lines are too spread out that the gravitational force between matters becomes extremely weak, as we observed.
    1. Supersymmetry (SUSY), symmetry breaking and Low Energy Phenomenology
      Supersymmetry is a beautiful idea that not only cures the "naturalness" problem of the Higgs mechanism in Standard Model and also unifies the physics of bosons and fermions. The latter property render huge predictive power which is only recently discovered. By holomorticity, non-perturbative property of SUSY gauge field theory can be calculated. This could have strong impact on our understanding of symmetry and symmetry breaking property of quantum field thery. Currently we are concentrating on how this predictive power can be used in the discreet symmetry, like CP, in a SUSY gauge field theory. On the other hand, one of the most urgent problems facing SUSY is how to break it as it has to be. Attention has turned to the dynamical symmetry breaking mechanism lately. However the models built so far are still too clumsy to be true. I plan to study the phenomenological implication of SUSY dynamical symmetry breaking and also try to improve on the models realizing this idea.
    2. Unpartcle Physics

    My Education:

    1. 1983-1987 NATIONAL TAIWAN UNIVERSITY, Taipei, Taiwan, Bachelor of Science degree in Physics, June 1987.
    2. 1989-1995 HARVARD UNIVERSITY Cambridge, Massachusetts, Ph.D. degree in Physics, June 1995. Doctoral thesis adviser: Howard Georgi.

    No comments:

    Post a Comment