Thursday, March 31, 2016

Comparing and Combining Generative and Posterior Probability Models:P = posterior(obj,X) returns the posterior probabilities of each of the k components in the Gaussian mixture ... Cluster Analysis · Gaussian Mixture Models

How to compute posterior model probabilities ... and why ...

www.math.rug.nl/stat/models/files/green.pdf
University of Groningen
Mar 15, 2011 - the product of posterior model probabilities and model-specific parameter posteriors. – very often the basis for reporting the inference, and in ...

[PDF]Posterior probability

https://astro.uni-bonn.de/.../Lecture3_2012.pdf
Hoher List Observatory
model parameters but it is not a probability density for θ). P(θ|x): old name “inverse probability” modern name “posterior probability”. Starting from observed ...

[PDF]a comparison of the information and posterior probability ...

https://www.princeton.edu/~erp/.../M253.pdf
Princeton University
by GC Chow - ‎1979 - ‎Cited by 102 - ‎Related articles
POSTERIOR PROBABILITY CRITERIA FOR MODEL SELECTION. Gregory C. ... formodel selection based on the posterior probability criterion, and points out.

What are posterior probabilities and prior probabilities ...

support.minitab.com/.../modeling.../what-are-posterior-and-prior-probab...
posterior probability is the probability of assigning observations to groups given the data. A prior probability is the probability that an observation will fall into a ...

[PDF]Posterior Model Probabilities via Path-based Pairwise Priors ...

https://www2.stat.duke.edu/~berger/papers/pathwise.pdf
Duke University
by JO Berger - ‎Cited by 41 - ‎Related articles
Posterior Model Probabilities via Path-based. Pairwise Priors. James O. Berger1. Duke University and Statistical and Applied Mathematical Sciences Institute,.

Bayesian model choice based on Monte Carlo estimates of ...

www.sciencedirect.com/science/.../S0167947304002464
ScienceDirect
by P Congdon - ‎2006 - ‎Cited by 56 - ‎Related articles
An approach is outlined here that produces posterior model probabilities and hence Bayes factor estimates but not marginal likelihoods. It uses a Monte Carlo ...

Posterior probabilities for choosing a regression model

www.jstor.org/stable/2335274
JSTOR
by AC Atkinson - ‎1978 - ‎Cited by 142 - ‎Related articles
Biometrika (1978), 65, 1, pp. 39-48. 39. With 4 text-figures. Printed in Great Britain.Posterior probabilities for choosing a regression model. BY A. C. ATKINSON.

Posterior probabilities of components - MATLAB - MathWorks

www.mathworks.com › ... › Gaussian Mixture Models
MathWorks
P = posterior(obj,X) returns the posterior probabilities of each of the k components in the Gaussian mixture ... Cluster Analysis · Gaussian Mixture Models.

[PDF]Comparing and Combining Generative and Posterior ...

www.aclweb.org/.../W04-3209...
Association for Computational Linguistics
by Y Liu - ‎Cited by 35 - ‎Related articles
Comparing and Combining Generative and Posterior Probability Models: Some Advances in Sentence Boundary Detection in Speech. Yang Liu. ICSI and .

No comments:

Post a Comment