http://ipa.iwr.uni-heidelberg.de/ipabib/Papers/Lellmann-et-al-09b.pdf
http://lmb.informatik.uni-freiburg.de/Publications/2012/Keu12/Dissertation_Keuper.pdf
.6. Mathematical Notation
N the space of natural numbers
R the space of real numbers
C the space of complex numbers
Ω ⊆ R
d
image domain in d-dimensional space
Ω1 t Ω2 union over open regions Ω1 and Ω2
Ω1 ∪ Ω2 union over closed regions Ω1 and Ω2
x d-tuple of real coordinates
Γ : [0, 1] → Ω ⊆ R
2
a contour in R
2
|Γ| the length of contour Γ
κ(s) the curvature of a contour Γ at position s ∈ [0, 1]
Γ : [0, 1] × [0, 1] → Ω ⊆ R
3
a contour in R
3
v
T
transposed vector v
∇I =
∂I
∂x1
, . . . ,
∂I
∂xd
T
the gradient operator on I : R
d → R
div(I) = ∂I
∂x1
+ · · · +
∂I
∂xd
the divergence operator on I : R
d → R
∆I =
∂
2
I
∂x2
1
+ · · · +
∂
2
I
∂x2
d
the Laplace operator on I : R
d → R
G = (V, E) undirected graphical model
V = {v1, . . . , v|V|} set of nodes
|V| cardinality of the set of nodes
N neighborhood system
X probability space
` ∈ X label configuration
`i
label of vertex vi
C set of all cliques in graph G
Ψ(`) potential functions
Φ : R
d → R d-dimensional embedding function
· , ·
inner product
Gσ a Gaussian normal distribution with standard deviation σ
∗ the convolution operator
p(·) probability density function
H(·) Heavyside function
δ the Dirac impulse
TV(·) the TV norm
k · k the L2 norm of a vector
| · | the absolute value
ΠS(·) projection onto the set S
o : Ω → R the objective function
s : Ω → R the specimen function
h : Ω → R the point spread function
n : R → R a voxel-wise noise function
nG zero mean Gaussian noise function
9
1. Introduction
ˆf estimate of function f
f
m(x) = f(−x) the mirrored function f
F(·) the Fourier transform
F
−1
(·) the inverse Fourier transform
f
0 derivative of a differentiable function f
x
∗
the complex conjugate of x ∈ C
J0 zero order Bessel function of the first kind
ı the imaginary unit
P
m
l
associated Legendre polynomial of order m and degree l
Y
m
l
spherical harmonic basis function of order m and degree l
No comments:
Post a Comment