of total variation (TV) regularization of such data, cf. Lellmann et al
file:///C:/Users/msfcfname/Downloads/lellmann-et-al-iccv2013.pdf
Scale Space and Variational Methods in Computer Vision: ...
https://books.google.com/books?isbn=331918461X
Jean-François Aujol, Mila Nikolova, Nicolas Papadakis - 2015 - Computers
The TGV2β,α functional reads TGV2β,α(u) = minw∈BD(Ω) α Du − wM +βEwM ... Let Ωbe an open, bounded domain in Rd. A function u ∈ L1(Ω) is a function of ... norm of anRl–valued distribution T in Ω: TM := sup { 〈T ,v〉 : v ∈ C∞c(Ω;Rl), v∞ ...PDF (358.7 KB) - ESAIM: Control, Optimisation and Calculus ...
www.esaim-cocv.o...
ESAIM : Control, Optimisation and Calculus of Variati...
by A Braides - 2000 - Cited by 60 - Related articles
un → u in measure, vn ⇀ v in Lq(Ω;Rd) and Avn → 0 in W. −1,q(Ω;Rl) (see also [PDF (386.9 KB)
www.esaim-cocv.o...
ESAIM : Control, Optimisation and Calculus of Variati...
by A Poliakovsky - 2010 - Cited by 3 - Related articles
given u : Ω → Rl×N , ¯Hu : RN → Rl is defined by. ⎧. ⎨. ⎩ ..... denote the set of thefunctions p(t, x) : R × Ω → Rd×d satisfying the following conditions:.[PDF]On general characterization of Young measures associated ...
arxiv.org/pdf/1601.00206
arXiv
by AZ Grzybowski - 2016 - Related articles
Jan 2, 2016 - is a probability distribution of the random variable f(U), where U has a ... with any Borel function f defined on the set Ω ⊂ Rd with positive Lebesgue ... Let Rd ⊃Ω be nonempty, bounded open set and let K ⊂ Rl be compact.[PDF]HOMOGENIZATION OF INTEGRAL ENERGIES UNDER ...
https://www.math.cmu.edu/.../15-CNA-005.p...
Carnegie Mellon University
by E DAVOLI - Related articles
We show in Proposition 3.4 that a function u ∈ Lp(Ω; Rd) belongs to C. A ... in W−Spatial and Spatio-Temporal Geostatistical Modeling and ...
https://books.google.com/books?isbn=1118762436
In practice, fitted stationary spatio-temporal covariance functions often include a ... Cω(u)= ∫ e−iω′hC(h,u)dh, (5.38) is a covariance function for every ω ∈ Rd ... Gneiting (2002) generalizes this result for C defined on Rd × Rl, from which the ...Digital Filters: Basics and Design - Page 180 - Google Books Result
https://books.google.com/books?isbn=3642143253
Dietrich Schlichthärle - 2011 - Technology & Engineering
j j C C L L uC i iL u ω ω = = Using (5.52a) and assuming an arbitrary port ... (5.66[PDF]ON THE STRUCTURE OF s -FREE MEASURES AND ...
cvgmt.sns.it/media/.../AfreeMeasures.p...
Scuola Normale Superiore di Pisa
by G DE PHILIPPIS - 2016 - Cited by 1
Jan 25, 2016 - open set and let u ∈ L1(Ω;Rl) with Dru ∈ M(Ω; SLinr(Rd;Rl)) for ... class of functions of bounded deformation, i.e. those functions u ∈ L1(Ω;Rd) ...Hyperbolic Problems: Theory, Numerics and Applications(In ...
https://books.google.com/books?isbn=9814417106
Tatsien Li, Song Jiang - 2012 - Mathematics
∂t u + ∇ · (F(u) − A(u,∇u)) = 0 in Ω × [0,T] (2.1) equipped with Dirichlet boundary data gD on Γ = ∂Ω. For scalar case we have u : Rd × [0,T] → R, F : Rd → Rd, A : R × Rd →Rd and ... finite polygonal grid Th = {K} which partitions Ω to define the followingfunction spaces for some l, k ∈ N Vlh = {v∈ L∞(Ω,Rl)|v| K∈ [Pk(K)]l}.[TeX]latex file - UC Davis Mathematics
https://www.math.ucdavis.edu/.../pdeB2.te...
for all sufficiently small h > 0, does not imply that D u ∈ L1(Ω'). ... with constant coefficients aij, bi, c, acting on functions u : \Rln → \Rl. Use the Fourier transform ...
University of California, Davis
% This is a shell LaTeX input file. (Version of 9 April 1986) \documentclass[12pt]{article} % Specifies the document style. \pagestyle{empty} \usepackage{amsfonts} \def\Rl{\mathbb{R}} \def\Cx{\mathbb{C}} \def\Sp{\mathbb{S}} \def\Nl{\mathbb{N}} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\bea}{\begin{eqnarray}} \newcommand{\eea}{\end{eqnarray}} \newcommand{\beann}{\begin{eqnarray*}} \newcommand{\eeann}{\end{eqnarray*}} \begin{document} \centerline{{\sc Problem set 2}} \centerline{Math 218B, Spring 2001} \bigskip\noindent {\bf 1.} Give a counterexample to show that if $\Omega' \subset \subset \Omega$, then $u\in L^1_{\mathrm{loc}}(\Omega)$, and \[ \|D^h u\|_{L^1(\Omega')} \le C, \] for all sufficiently small $h > 0$, does not imply that $D u \in L^1(\Omega')$. Where does the proof of the analogous result for $1<p<\infty$ fail? \bigskip\noindent {\bf 2.} Consider the following problem for $u\in H^1(\Omega)$: \[ \int_{\Omega} \left\{a^{ij} u_{x^i} v_{x^j} + b^{i} u_{x^i} v + cu\right\} \, dx = 0 \qquad\mbox{for all $v\in H^1(\Omega)$}. \] If the function $u$ is smooth, and the coefficient functions and the domain are also smooth, derive the PDE and boundary conditions that correspond to this weak formulation. \bigskip\noindent {\bf 3.} Give a precise weak formulation of the \emph{biharmonic} equation \beann &\Delta^2 u = f,\qquad&\mbox{in $\Omega$}\\ &u = \frac{\partial u}{\partial n} = 0\qquad&\mbox{on $\partial\Omega$}. \eeann Prove that there exists a unique weak solution $u\in H^2_0(\Omega)$ for every $f\in L^2(\Omega)$. \bigskip\noindent {\bf 4.} Suppose that $L$ is an elliptic operator \[ Lu = a^{ij}u_{x^i x^j} + b^i u_{x^i} + c u \] with constant coefficients $a^{ij}$, $b^i$, $c$, acting on functions $u : \Rl^n \to \Rl$. Use the Fourier transform to show that if $u\in L^2(\Rl^n)$ and $L u \in L^2(\Rl^n)$, then $u\in H^2(\Rl^n)$, and there exists a constant $C$ such that \[ \|u\|_{H^2(\Rl^n)} \le C \left(\|L u\|_{L^2(\Rl^n)} + \|u\|_{L^2(\Rl^n)}\right). \] \bigskip\noindent {\bf 5.} Let $\Omega_\alpha\subset \Rl^2$ be the wedge \[ \Omega_\alpha = \left\{ (r,\theta) \mid 0 < r < 1, \quad 0 < \theta < \alpha\right\}, \] where $(r,\theta)$ are polar coordinates. Use separation of variables to solve the following boundary value problem for Laplace's equation in the wedge: \beann &\Delta u = 0\qquad&\mbox{in $\Omega_\alpha$},\\ &u = 0\qquad&\mbox{when $\theta = 0, \alpha$},\\ &u = \sin\left(\frac{\pi \theta}{\alpha}\right) \qquad&\mbox{when $r = 1$}. \eeann Show that $u \in H^1(\Omega_\alpha)$, as required by the general existence theorem, but that $u \notin H^2(\Omega_\alpha)$ when $\alpha > \pi$. (This example shows that global regularity may fail when the boundary is not sufficiently smooth.) \end{document} % End of document.
No comments:
Post a Comment