Sunday, March 27, 2016

/lellmann-et-al- ucdavis a shell LaTeX input file

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Baust_Total_Variation_Regularization_2015_CVPR_paper.pdf


of total variation (TV) regularization of such data, cf. Lellmann et al


file:///C:/Users/msfcfname/Downloads/lellmann-et-al-iccv2013.pdf


Scale Space and Variational Methods in Computer Vision: ...

https://books.google.com/books?isbn=331918461X
Jean-François Aujol, ‎Mila Nikolova, ‎Nicolas Papadakis - 2015 - ‎Computers
The TGV2β,α functional reads TGV2β,α(u) = minw∈BD(Ω) α Du − wM +βEwM ... Let Ωbe an open, bounded domain in Rd. A function u ∈ L1(Ω) is a function of ... norm of anRl–valued distribution T in Ω: TM := sup { 〈T ,v〉 : v ∈ C∞c(Ω;Rl), v∞ ...

PDF (358.7 KB) - ESAIM: Control, Optimisation and Calculus ...

www.esaim-cocv.o...
ESAIM : Control, Optimisation and Calculus of Variati...
by A Braides - ‎2000 - ‎Cited by 60 - ‎Related articles
un → u in measure, vn ⇀ v in Lq(Ω;Rd) and Avn → 0 in W. −1,q(Ω;Rl) (see also [14]). Here, and in ... A function f : Rd → R is said to be A-quasiconvex if f(v) ≤. ∫.

PDF (386.9 KB)

www.esaim-cocv.o...
ESAIM : Control, Optimisation and Calculus of Variati...
by A Poliakovsky - ‎2010 - ‎Cited by 3 - ‎Related articles
given u : Ω → Rl×N , ¯Hu : RN → Rl is defined by. ⎧. ⎨. ⎩ ..... denote the set of thefunctions p(t, x) : R × Ω → Rd×d satisfying the following conditions:.

[PDF]On general characterization of Young measures associated ...

arxiv.org/pdf/1601.00206
arXiv
by AZ Grzybowski - ‎2016 - ‎Related articles
Jan 2, 2016 - is a probability distribution of the random variable f(U), where U has a ... with any Borel function f defined on the set Ω ⊂ Rd with positive Lebesgue ... Let Rd ⊃Ω be nonempty, bounded open set and let K ⊂ Rl be compact.

[PDF]HOMOGENIZATION OF INTEGRAL ENERGIES UNDER ...

https://www.math.cmu.edu/.../15-CNA-005.p...
Carnegie Mellon University
by E DAVOLI - ‎Related articles
We show in Proposition 3.4 that a function u ∈ Lp(ΩRd) belongs to C. A ... in W−1,p(Q; Rl) for a.e. x ∈ Ω. This generalizes the classical characterization of 2-.

Spatial and Spatio-Temporal Geostatistical Modeling and ...

https://books.google.com/books?isbn=1118762436
In practice, fitted stationary spatio-temporal covariance functions often include a ... Cω(u)= ∫ e−iω′hC(h,u)dh, (5.38) is a covariance function for every ω ∈ Rd ... Gneiting (2002) generalizes this result for C defined on Rd × Rl, from which the ...

Digital Filters: Basics and Design - Page 180 - Google Books Result

https://books.google.com/books?isbn=3642143253
Dietrich Schlichthärle - 2011 - ‎Technology & Engineering
j j C C L L uC i iL u ω ω = = Using (5.52a) and assuming an arbitrary port ... (5.66b) The transfer functions (5.66) describe the behaviour of first-order all-pass filters. ... The phase can be expressed as: π )/ arctan( 2)( Port + = RL bL ω ω (5.67a) ) ...

[PDF]ON THE STRUCTURE OF s -FREE MEASURES AND ...

cvgmt.sns.it/media/.../AfreeMeasures.p...
Scuola Normale Superiore di Pisa
by G DE PHILIPPIS - ‎2016 - ‎Cited by 1
Jan 25, 2016 - open set and let u ∈ L1(Ω;Rl) with Dru ∈ M(Ω; SLinr(Rd;Rl)) for ... class of functions of bounded deformation, i.e. those functions u ∈ L1(Ω;Rd) ...

Hyperbolic Problems: Theory, Numerics and Applications(In ...

https://books.google.com/books?isbn=9814417106
Tatsien Li, ‎Song Jiang - 2012 - ‎Mathematics
∂t u + ∇ · (F(u) − A(u,∇u)) = 0 in Ω × [0,T] (2.1) equipped with Dirichlet boundary data gD on Γ = ∂Ω. For scalar case we have u : Rd × [0,T] → R, F : Rd → Rd, A : R × Rd →Rd and ... finite polygonal grid Th = {K} which partitions Ω to define the followingfunction spaces for some l, k ∈ N Vlh = {v∈ L∞(Ω,Rl)|v| K∈ [Pk(K)]l}.

[TeX]latex file - UC Davis Mathematics

https://www.math.ucdavis.edu/.../pdeB2.te...
University of California, Davis
for all sufficiently small h > 0, does not imply that D u ∈ L1(Ω'). ... with constant coefficients aij, bi, c, acting on functions u : \Rln → \Rl. Use the Fourier transform ...


% This is a shell LaTeX input file.  (Version of 9 April 1986)

\documentclass[12pt]{article}    % Specifies the document style.
\pagestyle{empty}
\usepackage{amsfonts}

\def\Rl{\mathbb{R}}
\def\Cx{\mathbb{C}}
\def\Sp{\mathbb{S}}
\def\Nl{\mathbb{N}}

\newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}}
\newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}}
\newcommand{\beann}{\begin{eqnarray*}}
\newcommand{\eeann}{\end{eqnarray*}}

\begin{document}           


\centerline{{\sc Problem set 2}}
\centerline{Math 218B, Spring 2001}

\bigskip\noindent
{\bf 1.} Give a counterexample to show that
if $\Omega' \subset \subset \Omega$, then
$u\in L^1_{\mathrm{loc}}(\Omega)$, and
\[
\|D^h u\|_{L^1(\Omega')} \le C,
\]
for all sufficiently small $h > 0$, does not imply
that $D u \in L^1(\Omega')$. Where does the
proof of the analogous result for $1<p<\infty$ fail?


\bigskip\noindent
{\bf 2.} Consider the following problem for $u\in H^1(\Omega)$:
\[
\int_{\Omega} \left\{a^{ij} u_{x^i} v_{x^j} +  b^{i} u_{x^i} v + cu\right\} \, dx = 0
\qquad\mbox{for all $v\in H^1(\Omega)$}.
\]
If the function $u$ is smooth, and the coefficient functions
and the domain are also smooth, derive the PDE and boundary conditions
that correspond to this weak formulation.



\bigskip\noindent
{\bf 3.} Give a precise weak formulation of the \emph{biharmonic} equation
\beann
&\Delta^2 u = f,\qquad&\mbox{in $\Omega$}\\
&u = \frac{\partial u}{\partial n} = 0\qquad&\mbox{on $\partial\Omega$}.
\eeann
Prove that there exists a unique weak solution $u\in H^2_0(\Omega)$
for every $f\in L^2(\Omega)$.

\bigskip\noindent
{\bf 4.} Suppose that $L$ is an elliptic operator
\[
Lu = a^{ij}u_{x^i x^j} + b^i u_{x^i} + c u
\]
with constant coefficients $a^{ij}$, $b^i$, $c$, acting on functions
$u : \Rl^n \to \Rl$. Use the Fourier transform to show that if
$u\in L^2(\Rl^n)$ and $L u \in L^2(\Rl^n)$, then $u\in H^2(\Rl^n)$,
and there exists a constant $C$ such that
\[
\|u\|_{H^2(\Rl^n)} \le C \left(\|L u\|_{L^2(\Rl^n)} + \|u\|_{L^2(\Rl^n)}\right).
\]

\bigskip\noindent
{\bf 5.} Let $\Omega_\alpha\subset \Rl^2$ be the
wedge
\[
\Omega_\alpha = \left\{ (r,\theta) \mid 0 < r < 1, \quad 0 < \theta <
\alpha\right\},
\]
where $(r,\theta)$ are polar coordinates. Use separation of variables to solve
the following boundary value problem for Laplace's equation in the wedge:
\beann
&\Delta u = 0\qquad&\mbox{in $\Omega_\alpha$},\\
&u = 0\qquad&\mbox{when $\theta = 0, \alpha$},\\
&u = \sin\left(\frac{\pi \theta}{\alpha}\right)
\qquad&\mbox{when $r = 1$}.
\eeann
Show that $u \in H^1(\Omega_\alpha)$, as required by the general
existence theorem, but that $u \notin H^2(\Omega_\alpha)$
when $\alpha > \pi$. (This example shows that global regularity may fail
when the boundary is not sufficiently smooth.)
\end{document}             % End of document.

No comments:

Post a Comment