Sunday, June 28, 2015

体积矢 Clifford几何代数承接了这个角色,它所要求的三组对偶基本矢量可以被定义为三色:红、蓝、黄。先不管这三组矢量如何,先用它们把电子对用色子基元的超代数多项“和”形式表达出来,则其“碰撞”就可以表达为两个表达式的“乘法”运算。

正负电子对的淹没与Clifford几何代数
已有 1040 次阅读 2014-6-15 16:40 |个人分类:生活点滴|系统分类:科研笔记
 
      作为对前一篇博文的补充,代数与几何的争论事关未来物理学沿那个方向前进的问题。当然,一如既往的办法:求助于实验。但此类实验代价巨大。
      正负电子对的淹没表明如下事实:
      标量(如质量)可以消失;这个事实是正、负电子质量相同,而二者接触后,质量消失了。
      传统的物理学家无论如何也无法接受这个事实。而以能量并没有消失为论据而肯定质量可以消失是显得如此的可笑。
      电子的自旋(正、负电子的自旋如果相反的话)可以抵消,从而有加法存在。
      如果电荷量只不过是一种运动态,这就是很自然的事。如果不是,则如同质量消失一样,运动也可以消失,这就令人困惑了。
      可以用它们的淹没产生中微子来为此辨论,说中微子就是电子对运动的继存者。但是,中微子寿命很短,其自然的消失与其说它是一个客体,还不如说它是一个动力学过程。
      由此来看,寻求中微子的质量就是想维护经典的信念:物质不会消失。能量不会消失。
      作为整个过程来看,有如下结论:
      正、负电子对的淹没是彻底的,至少在经典物理概念上是如此;中微子只不过是其动力学过程的表现,而且,这个过程依然是个迷。
      粒子的寿命过程表明:粒子与某种未知物质相互作用而消失。解决了正负电子对的淹没问题也就有可能解决粒子的寿命问题。
      因而,在数学形式上构造这类过程就是必要的。
      Clifford几何代数承接了这个角色,它所要求的三组对偶基本矢量可以被定义为三色:红、蓝、黄。先不管这三组矢量如何,先用它们把电子对用色子基元的超代数多项“和”形式表达出来,则其“碰撞”就可以表达为两个表达式的“乘法”运算。
      由此,色动力学就建立起来了。而标量质量消失的条件为就等同于质量消失(其条件为:电子荷质比是个物理基本常数)。
      中微子的Clifford形式表现为完全部同于电子的形式,从而电荷也被消灭了。
      总可以选择电子对的质心系为实验系,从而,可以得到在这个系下的中微子的特定简化形式,这样的中微子没有质量,其运动类似于量子,但又有区别。
      但是,这种直接的消灭太干脆了,无法描写中微子衰变的过程。如果认为有衰变过程存在,那很容易的推论:中微子有静止质量。而这种异类的质量概念又引出真空有异类的质量。
      如果逆过程存在,则:由这种类型的真空可以激发出基本粒子,如电子。
      如何制造这类真空呢?高能碰撞完成后的瞬时真空应该就是此类真空!
      因此,在科学史角度看,高能物理的研究的终极目标是:建立经典基本粒子的理论表达形式。
      我们能看到的文献表明:一条是代数为出发点的路线;一条是几何为出发点的路线



由Clifford代数引起的若干联想
已有 2579 次阅读 2011-6-25 23:24 |个人分类:生活点滴|系统分类:科研笔记|关键词:联想
 
       Clifford代数的理论核心是在1867年建立的,但是,被物理学家忽视了。
    直到1975年前(一百多年后)后,才有那么几个“民科”写了几篇论文。而到了本世纪,它才被许多激进派物理学家所认识。
    这项工作与杂志:Application of Clifford Algebra 的创立是有关系的,目前,在物理学上的应用还是初级阶段。阻力还很大。一般地说,力学、物理学类期刊还是有排斥此类论文的倾向。
 
    Clifford代数的理论形式,到目前为止,有很多形式。就理性力学而言,关心的是它的三维空间形式在应力、应变概念上的应用。
    而理论物理学家关心的是它在四维时空中的理论表达方式。
 
    就三维而言,Clifford代数的理论核心是:有8个基本量,他们是:1(一个长度单位)、三个基矢、三个面矢、和一个空间整体定向矢。
    1)如果只使用1(一个长度单位)和三个基矢,就是一般的矢量运算代数,这是广为人知的本科教科书经典。
       2)如果使用1(一个长度单位)、三个基矢、三个面矢、并规定三个基矢和三个面矢满足度规张量的互逆关系,就是Riemann几何,而纳入张量代数的范畴。
    3)放弃三个基矢和三个面矢的外积的数学关系,而是以物理上的真实性为考察重点,则会形成Clifford代数的理论核心:有8个基本量。
    而前面的两个代数系统就成为它的子代数系统。
 
    一般地说,由实数的简单代数升级到矢量运算代数还是比较容易的,这是Hilbert代数的拿手好戏。
    又矢量运算代数升级到张量代数就要费劲了。
    而由张量代数升级到Clifford代数就是难上加难了。
 
    就我的观察而言,A)如果读者是:矢量代数级的水平,如果很聪明能干,就会“创新”出张量代数的某些内涵,但是,又形不成系统,因而,能解决好某些特殊问题,但是又无法获得普遍性。如果他没有意识到这点,而是努力奋斗,就走向了错误的路线。最后只能是失败。这种失败模式是最常见的。
    B)如果读者是:张量代数级的水平,如果很聪明能干,就会迷失在花样百出的各种现代数学中,一会这好、一会那好,一山望着一山高。这是近50年来全球科学界的特点。对个人这往往是失败,但是,对整个科学进程,这是必经阶段。也正是这种努力使得Clifford代数被人们重视起来。
   
    就科学史而言,我们会问:为何电磁场论选择矢量运算代数?相对论一开始就不选择Clifford代数而是选择张量代数?
    事实上,这是伪论题。选择那个代数体系取决于科学界的整体理论水平和当时的实践水平。
    但是,有一点是非常肯定的:由矢量运算代数水平直接升级到Clifford代数水平是不可能的。
    在我国,张量代数还没有普及,因而Clifford代数水平的研究工作基本上是处于被排斥的地位。
    事实上,真实情况比这还要糟糕,张量代数水平的研究工作在国内就很少见到。
    在大学的教学中,矢量代数级的线性代数课程普遍的是偷工减料。而在研究生的教学中,张量代数或抽象代数也是偷工减料。我们看不到新生力量的产出机制。
    就宏观看,象Application of Clifford Algebra这样的期刊是不会在国内出现的。也就是说,我们没有能力或机制在学界的一片反对和抵制中创立针对学科发展需求的期刊。
   
    这篇博文的目的还有鼓动力学爱好者向国际前沿前进的用心。
    由张量代数升级到Clifford代数就是目前的摆在理性力学界的主要任务了。
 
    我在2000年就注意到,我国力学家陈先生建立的变形几何是对Riemann几何的升级,对变形力学,至少需要引用:1(一个长度单位)、三个基矢和三个面矢作为基本量。也就是说,必须放弃“三个基矢和三个面矢满足度规张量的互逆关系”。
    为了掩盖在理论上的这个条件,只能放弃常规的Riemann几何,而修改它。陈先生的巧妙在于用1(一个长度单位)、三个基矢和三个转动矢来构造变形几何。
    熟练了Riemann几何(张量代数)的数学家理所当然的反对。
 
    而我则还是很不满足,又引入了一个类似于体积矢的量。也就是说,有了8个基本量。但是,第8个量是很勉勉强强的。那么,难道就没有一个现成的代数系统可以给我提供支持吗?出于寻求外援的目的,这十几年来我投入大量的精力在数学理论上。
    一步步的,直到最近几年。我才发现,Clifford代数的理论核心就是我要找的外援。
 
    也就是说,陈先生的理性力学的精确数学基本框架是Clifford代数下的张量代数。而不是Riemann几何意义上的张量代数(也不是Lie代数、辛几何)。
    十多年前,陈先生对我说,我是先建立符合力学客观规律的数学表达方式,以后再去寻求其精确的数学理论。我这一找就是十年。
    功夫不负苦心人。有了Clifford代数为线索,陈先生的理性力学将在今后的几年里再次升级。从而,应用于更广泛的理性力学论题。
    完成这次升级就是我近期的工作重点了。估计要2年时间。与往常一样,论文将发表在arXiv上。
    想学Clifford代数的学者,可在arXiv网上用:Cliffordalgebra作为目标词得到大概200篇文献。没有现代数学基础者不要盲目的进入,先得补课。一般地说,补2年很正常。


▽2ψ(x,y,z)+(8π2m/h2)[E-U(x,y,z)]ψ(x,y,z)=0 我来解释一下: 先看一下数学形式: 这是一个二阶线性偏微分方程,ψ(x,y,z)是待求函数,它是x,y,z三个变量的复数函数(就是说函数值不一定是实数,也可能是虚数)。式子最左边的倒三角是一个算符,意思是分别对ψ(x,y,z)的x,y,z坐标求偏导的平方和。 再看一下物理含义: 这是一个描述一个粒子在三维势场中的定态薛定谔方程。所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。其中,E是粒子本身的能量;U(x,y,z)是描述势场的函数,假设不随时间变化。薛定谔方程有一个很好的性质,就是时间和空间部分是相互分立的,求出定态波函数的空间部分后再乘上时间部分e^(-t*i*2π/h)以后就成了完整的波函数了(时间部分记得不太清楚了,指数上的系数不保证正确)。 最后看一下薛定谔方程的解--波函数的性质。1.虽然任意给定的E都可以解出一个函数解,但只有满足一定条件的分立的一些E值才能给出有物理意义的波函数;2.由于薛定谔方程是一个线性微分方程,所以任意几个解的线性组合还是薛定谔方程的解


2012-11-15 23:33 irislight | 九级
第一问你仔细观察波函数的形式,明显是有两部分组成,给定的波函数是ψ1与ψ2叠加态
我大概讲个方法,你看用n=1,和n=2的定态波函数与该波函数求内积,看看有什么发现?
其实你仔细观察就能发现,初态波函数是有ψ1与ψ2组合而成的,
注意sin()cos()=1/2sin2(),
在套用定态波函数随时间演化的规律,ψn(t)=ψXexp(iEnt),把两个本征态的本征能级带入即可。
所以第一问很easy的,只要你熟悉波函数的态叠加原理就能一眼看出来~
年轻人,你还是太年轻了,题做的少

方程主要是用来求基态



电子和核的相互作用项难以分开 (动能算符+势能算符)*波函数=能量的本征值*波函数,


"
经典力学的谐振子与薛定谔方程的谐振子解
已有 181 次阅读2011-6-4 14:31|个人分类:随便瞎写|系统分类:科普集锦|关键词:量子力学
初等量子力学中,在讲到薛定谔方程时,一般都会求解几个势场作为范例,其中就包含了谐振子解。刚才在豆瓣上看到有人提问,似乎对这个解的含义不甚明了。
量子力学中的波函数Ψ(t,x,y,z),可以看作一个经典场。这个经典场的特别之处在于其统计诠释,不过在这里可以不管这个。薛定谔方程决定了波函数在时空中的分布,即以(t,x,y,z)为变量,Ψ的函数形式。在定态情形,波函数可分离变量:Ψ(t,x,y,z) = χ(t)ψ(x,y,z),因此定态薛定谔方程其实给定了一个经典场ψ(x,y,z)在空间中的分布。当然这个分布和势能表达式是有关的,因为定态薛定谔方程中有势能项。打个并不贴切的比方:设想有一只碗,碗底形状就好比是势能函数U(x,y),往碗里倒水,每一点的水深h(x,y)就是一个和空间坐标有关的函数,且取决于势能分布。假如碗底的形状有二次形式:U = (1/2)mω(x^2 + y^2),就意味着势能有谐振子形式。倒入一定高度的水(相当于总能量给定),就不难写出此时h(x,y)的表达式。
谐振子的定态波函数解也是差不多的意思,只不过求解过程要更复杂些,最终求得的,是在谐振子这个势场中,波函数经典场的空间分布函数。
定态波函数解和力学中一个动来动去的谐振子有很大不同。定态波函数解的意义已在上面叙述。而经典力学的谐振子,可以理解成一个波包在势场中运动,它的波函数Ψ(t,x,y,z)也是薛定谔方程的解,但却不是定态薛定谔方程的解。
将Ψ(0,x)(只考虑一维,t = 0时的波包)用能量基矢展开:Ψ(0,x) = c_{n}Ψ_{n}(0,x) ,等号右边要对n求和。其中Ψ_{n}(t,x) = Ψ_{n}(0,x) exp(-iE_{n}t),因此Ψ(t,x) = c_{n}Ψ_{n}(0,x)exp(-iE_{n}t) (等号右边对n求和)。这里的含时项不能从和式中提出,因此Ψ(t,x)不能分离变量,也无法得到关于Ψ(t,x)的定态薛定谔方程。但可以计算各能量本征态的演化,叠加而成Ψ(t,x)的演化规律,从而得到波包的运动图像。这个图像可以和经典谐振子做类比
"


kohn等人进一步改善了薛定谔方程,首先他们认为基态可以写成电子密度的泛函,真实的材料的所有性质都可以有电子密度求出。这就是密度泛函理论,详细的推导还是很繁琐的。
k-s方程中,动能是用的是无关联的自由电子动能,势能用的是无交换的电子相互作用能和离子对电子的势能,剩下的就是交换关联能。虽然方程是相当完美的,也很准确,但很可惜。交换关联能的具体形式是无法求解的。没办法,总有一些人是乐于奉献的,有些人花一辈子在找一个比较好的交换关联能的形式。LDA是一个很好的近似,认为电子可以分成各个部分均匀的电子气,进而得出了交换关联能的形式,本来这是一个近似。但是,在总能计算过程中,是相当的准确,这主要是由于交换能的低估和关联能的高估得到了很好的补偿






量子力学第一性原理:仅需五个物理基本常数 —— 电子质量、电子电量、普郎克常数、光速和玻耳兹曼常数,通过求薛定谔方程得到材料的电子结构,而不依赖于任何经验常数即可以预测微观体系的状态和性质,预测材料的组分、结构、性能之间的关系,进一步设计具有特定性能的新材料。


 



作为评价事物的依据,第一性原理和经验参数是两个极端。第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据) 如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。

       量子化学的第一性原理是指多电子体系的Schrödinger方程,但是光有这个方程是无法解决任何问题的,量子力学能够准确的解决的问题很少很少,绝大多数都是有各种各样的近似,为此计算量子力学提出一个称为“从头计算”的原理作为第一性原理,除了Schrödinger方程外还允许使用下列参数和原理:




  (1) 物理常数,包括光速cPlanck常数h、电子电量e、电子质量me以及原子的各种同位素的质量,尽管这些常数也是通过实验获得的。(在国际单位值中,光速是定义值,Planck常数是测量值,在原子单位制中则相反。)



  (2) 各种数学和物理的近似,最基本的近似是“非相对论近似”(Schrödinger方程本来就是非相对论的原理)、“绝热近似”(由于原子核质量比电子大得多,而把原子核当成静止的点处理)和“轨道近似”(用一个独立函数来描述一个独立电子的运动)



  量子化学的从头计算方法就是在各种近似上作的研究。如果只考虑一个电子,而把其他电子对它的作用近似的处理成某种形式的势场,这样就可以把多电子问题简化成单电子问题,这种近似称为单电子近似,也称为平均场近似,例如最基本的从头计算方法哈特里-富克(Hartree-Fock)方法,是平均场近似的一种,它把所有讨论的电子视为在离子势场和其他电子的平均势场中的运动。但是哈特里-富克近似程度过大,忽略了电子之间的交换和相关效应,使得计算的精度受到一定的限制,为了解决这一问题,P Hohenberg W Kohn1964年提出密度泛函理论density functional theory, DFT),这一理论将电子之间的交换相关势表示为密度泛函,然后使薛定谔方程在考虑了电子之间的复杂相互作用后利用建立在自洽场近似的方法求解,DFT认为:粒子的哈密顿量取决于电子密度的局域值,由此可以得出局域密度近似(local density approximation)方法。



 



由于诸多近似方法的使用,“从头计算”方法并不是真正意义上的第一性原理,但是其近似方法的运用使得量子计算得以实现。从头计算的结果具有相当的可靠程度,某些精确的从头计算产生的误差甚至比实验误差还小。



 



话说第一性原理的基本感念是指不采用经验参数……(此后省略若干千字)



不采用经验参数,但也得有近似才能计算。在处理原子的时候就采用了波恩-奥本海默近似(既绝热近似)这个近似的主要内容就是电子运动速度远远大于原子核,于是近似原子核不动,只考虑电子运动。于是,这个近似带来的效果就是体系在绝对零度时候的性质。



 



 



@@@什么是第一性原理呢?其实就是指从最基本的原理出发,不掺杂任何经验参数,而得出所有的现象。其实这个是很难的。但是能验证规律的正确性。而本文所提到的第一性原理,主要是指从量子力学的基本假设出发,而推导各种物理,化学等现象。也指从头算,即ab initio



最早期的从头算主要是一些量子化学的专家在搞。其实这还要从头说起,薛定谔搞出了薛定谔方程。方程写起来虽然简单,而且直观。(动能算符+势能算符)*波函数=能量的本征值*波函数。这是定态波函数,我就不写含时的方程了。这个方程主要是用来求基态。方程虽然容易写,但是求解起来实在是太难了。有点像经典力学里的混沌现象。虽然每个粒子都服从牛顿三大定律,但是求解是不可能的。首先,求解的难题是电子和核的相互作用项难以分开。还好奥本海默提出了绝热近似,即核的质量和电子的质量不是一个数量级的,所以速度也不是一个数量级的。认为核缓慢的能跟上电子的运动。这样,我们即可将核的方程和电子的方程分开。而在真实的材料中,电子的作用是很大。例如成键主要是指电子和电子的相互作用。因此我们只需要仔细求解电子的薛定谔方程即可。对于N个电子的系统,方程是3N维的。其求解仍然很难。所以,科学家们就想办法。最后的办法是,利用自洽的方法求解。自洽其实是一个很有意思的办法,说白了,就是指,AB有数学的依赖关系,但AB的方程是解不出来的。给出一个A我可以求B,有B又反求出一个A,这样循环下去直到|A_new - A_old|<无穷小,或者|B_new -B_old|<无穷小。方程自洽,运算结束。这只是简单的举例。首先,这个由hartreefock提出了hartree-fock近似,他们将多电子的波函数写成了单个电子波函数的积的形式,考虑了全同粒子的交换性,而哈密顿量写成了密度的泛函,进而求得基态能量,可以说这是一个很大的进步。但确定是没有考虑电子间的关联作用。接着,由kohn等人进一步改善了薛定谔方程,首先他们认为基态可以写成电子密度的泛函,真实的材料的所有性质都可以有电子密度求出。这就是密度泛函理论,详细的推导还是很繁琐的。



k-s方程中,动能是用的是无关联的自由电子动能,势能用的是无交换的电子相互作用能和离子对电子的势能,剩下的就是交换关联能。虽然方程是相当完美的,也很准确,但很可惜。交换关联能的具体形式是无法求解的。没办法,总有一些人是乐于奉献的,有些人花一辈子在找一个比较好的交换关联能的形式。LDA是一个很好的近似,认为电子可以分成各个部分均匀的电子气,进而得出了交换关联能的形式,本来这是一个近似。但是,在总能计算过程中,是相当的准确,这主要是由于交换能的低估和关联能的高估得到了很好的补偿。



最后再讲一下,KS方程的基本流程。首先,给出一个试探的电荷密度,可以写出哈密顿量,从而求得本证值和本证波函数。而本证波函数的模的平方就是电荷密度,这样看电荷密度是否自洽。不自洽就继续,直到自洽。当然我这里也只是笼统的说。在具体实现中,还有很多细节。需要仔细推导公式。如波函数是用平面波展开还是用轨道展开。轨道主要指的是TB的方法,即紧束缚方法。还有介于他们之间,如LMTO。还有,为了减少平面波的数量,计算加快是采用赝势的方法。很多很多细节问题需要主要,还是需要找一本书仔细推导。但基本思想是,电子的作用相当关键,如果我们能解决好电子的问题,我们就能解决很多难题,如高温超导等问题。



    第一性原理之所以能得到如此发展,很大的程度依赖于计算机的发展,现在的集群越来越强大。要求越来越多的人,既懂理论,又会编程。这样才能由理论到程序,到计算,最后得到结果,解释很多现象,探索基本的规律。想对规律研究,紧紧靠推导理论是难以实现的,还是需要在新现象或反常现象中去摸索。这样,就需要我们做一些具体的计算。也正因为如此,第一性原理还有很大的发展空间,是很有潜力。但需要你去认真的推导理论,热爱编程。



 



@@@



第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。



 



我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。



 



从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。



 



那为什么使用“第一性原理”这个字眼呢?据说这是来源于“第一推动力”这个宗教词汇。第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作 用下保持静止或匀速直线运动。如果宇宙诞生之初万事万物应该是静止的,后来却都在运动,是怎么动起来的呢?牛顿相信这是由于上帝推了一把,并且牛顿晚年致 力于神学研究。现代科学认为宇宙起源于大爆炸,那么大爆炸也是有原因的吧。所有这些说不清的东西,都归结为宇宙“第一推动力”问题。



 



科学不相信上帝,我们不清楚“第一推动力”问题只是因为我们科学知识不完善。第一推动一定由某种原理决定。这个可以成为“第一原理”。爱因斯坦晚年致力与 “大统一场理论”研究,也是希望找到统概一切物理定律的“第一原理”,可惜,这是当时科学水平所不能及的。现在也远没有答案。



 



但是为什么称量子力学计算为第一性原理计算?大概是因为这种计算能够从根本上计算出来分子结构和物质的性质,这样的理论很接近于反映宇宙本质的原理,就称为第一原理了。



 



广义的第一原理包括两大类,以Hartree-Fork自洽场计算为基础的ab initio从头算,和密度泛函理论(DFT)计算。也有人主张,ab initio专指从头算,而第一性原理和所谓量子化学计算特指密度泛函理论计算。



目前主要的计算软件:PWscf Material StudioVASPWein2k.



个人推荐PW.



需要精通的编程语言:fortranC.



 



@@@第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。



我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。



 



从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。



 



那为什么使用“第一性原理”这个字眼呢?据说这是来源于“第一推动力”这个宗教词汇。第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作 用下保持静止或匀速直线运动。如果宇宙诞生之初万事万物应该是静止的,后来却都在运动,是怎么动起来的呢?牛顿相信这是由于上帝推了一把,并且牛顿晚年致 力于神学研究。现代科学认为宇宙起源于大爆炸,那么大爆炸也是有原因的吧。所有这些说不清的东西,都归结为宇宙“第一推动力”问题。



 



科学不相信上帝,我们不清楚“第一推动力”问题只是因为我们科学知识不完善。第一推动一定由某种原理决定。这个可以成为“第一原理”。爱因斯坦晚年致力与 “大统一场理论”研究,也是希望找到统概一切物理定律的“第一原理”,可惜,这是当时科学水平所不能及的。现在也远没有答案。



 



但是为什么称量子力学计算为第一性原理计算?大概是因为这种计算能够从根本上计算出来分子结构和物质的性质,这样的理论很接近于反映宇宙本质的原理,就称为第一原理了。



 



@@@能带理论的这三个基本假设是



 



1)绝热近似



 



由于离子质量远大于电子质量,故离子的运动速度远小于电子的运动速度。当原子核运动时,电子极易调整它的位置,跟上原子核的运动。而当电子运动时,可近似认为原子核还来不及跟上,保持不动。这样,在考虑电子的运动时,可以认为离子实固定在其瞬时新加坡 ,可把电子的运动与离子实的运动分开处理,称玻恩—奥本哈莫近似或绝热近似。通过绝热近拟,把一个多粒子体系问题简化为一个多电子体系。



 



2)单电子近似



 



多电子体系仍然是一个很大的体系,直接求解式(1)也有困难,需要进一步简化。认为一个电子在离子实和其他电子所形成的势场中运动,称为哈特里(Hartree)—福克(Fock)自洽场近似,也称为单电子近似。单电子近似把一个多电子问题转化为一个单元电子问题。



 



3)周期场近似



 



单电子近似使得相互作用的电子系统简化为无相互作用的电子系统。由于晶格的周期性,我们可以合理地假设所有电子及离子实产生的场都具有晶格周期性,即U (r)=U (r+Rn),其中R=n1a1+n2a2+n3a3中正格矢。这个近似称为周期场近似。所以,能带理论有时被称为周期场理论。



 



采用这些假设后,晶体中的电子状态问题变成一个电子在周期性势场中的运动问题,使问题大简化,但却导致能带理论具有局限性。



广义的第一原理包括两大类,以Hartree-Fork自洽场计算为基础的ab initio从头算,和密度泛函理论(DFT)计算。也有人主张,ab initio专指从头算,而第一性原理和所谓量子化学计算特指密度泛函理论计算。



目前主要的计算软件:PWscf Material StudioVASPWein2k.



个人推荐PW.



需要精通的编程语言:fortranC.



 



如何分析第一原理的计算结果



 



摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点



 



    用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:



 



1、电荷密度图(charge density);



 



2、能带结构(Energy Band Structure);



 



3、态密度(Density of States,简称DOS)。



 



    电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。



 



    能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样直观和普适。不过仍然可以总结出一些经验性的规律来。主要有以下几点:



 



1 因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密集。原则上讲,这个区域的能带并不具备多大的解说/阅读价值。因此,不要被这种现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。



 



2 能带的宽窄在能带的分析中占据很重要的位置。能带越宽,也即在能带图中的起伏越大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组成这条能带的原子轨道扩展性越强。如果形状近似于抛物线形状,一般而言会被冠以类sp带(sp-like band)之名。反之,一条比较窄的能带表明对应于这条能带的本征态主要是由局域于某个格点的原子轨道组成,这条带上的电子局域性非常强,有效质量相对较大。



 



3 如果体系为掺杂的非本征半导体,注意与本征半导体的能带结构图进行对比,一般而言在能隙处会出现一条新的、比较窄的能带。这就是通常所谓的杂质态(doping state),或者按照掺杂半导体的类型称为受主态或者施主态。



 



4 关于自旋极化的能带,一般是画出两幅图:majority spinminority spin。经典的说,分别代表自旋向上和自旋向下的轨道所组成的能带结构。注意它们在费米能级处的差异。如果费米能级与majority spin的能带图相交而处于minority spin的能隙中,则此体系具有明显的自旋极化现象,而该体系也可称之为半金属(half metal)。因为majority spin与费米能级相交的能带主要由杂质原子轨道组成,所以也可以此为出发点讨论杂质的磁性特征。



 



5 做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同的情况。具体地说,在某两点之间,费米能级与能带相交;而在另外的k的区间上,费米能级正好处在导带和价带之间。这样,衬底材料就呈现出各项异性:对于前者,呈现金属性,而对于后者,呈现绝缘性。因此,有的工作是通过某种材料的能带图而选择不同的面作为生长面。具体的分析应该结合试验结果给出。(如果我没记错的话,物理所薛其坤研究员曾经分析过$\beta$-Fe(100)(111)面对应的能带。有兴趣的读者可进一步查阅资料。)



 



原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。简要总结分析要点如下:



 



1 在整个能量区间之内分布较为平均、没有局域尖峰的DOS,对应的是类sp带,表明电子的非局域化性质很强。相反,对于一般的过渡金属而言,d轨道的DOS一般是一个很大的尖峰,说明d电子相对比较局域,相应的能带也比较窄。



 



2 DOS图也可分析能隙特性:若费米能级处于DOS值为零的区间中,说明该体系是半导体或绝缘体;若有分波DOS跨过费米能级,则该体系是金属。此外,可以画出分波(PDOS)和局域(LDOS)两种态密度,更加细致的研究在各点处的分波成键情况。



 



3 DOS图中还可引入“赝能隙”(pseudogap)的概念。也即在费米能级两侧分别有两个尖峰。而两个尖峰之间的DOS并不为零。赝能隙直接反映了该体系成键的共价性的强弱:越宽,说明共价性越强。如果分析的是局域态密度(LDOS),那么赝能隙反映的则是相邻两个原子成键的强弱:赝能隙越宽,说明两个原子成键越强。上述分析的理论基础可从紧束缚理论出发得到解释:实际上,可以认为赝能隙的宽度直接和Hamiltonian矩阵的非对角元相关,彼此间成单调递增的函数关系。



 



4 对于自旋极化的体系,与能带分析类似,也应该将majority spinminority spin分别画出,若费米能级与majorityDOS相交而处于minorityDOS的能隙之中,可以说明该体系的自旋极化。



 



5 考虑LDOS,如果相邻原子的LDOS在同一个能量上同时出现了尖峰,则我们将其称之为杂化峰(hybridized peak),这个概念直观地向我们展示了相邻原子之间的作用强弱。



谐振子能量是就是简谐振动的振动质点的能量,谐振子能量E=动能Ek+势能Ep,谐振子能量等于谐振子在平衡位置时大动能,也等于谐振子在最大位置时的势能!谐振子能量在简谐振动是一守恒量!

设想有一只碗,碗底形状就好比是势能函数U(x,y),往碗里倒水,每一点的水深h(x,y)就是一个和空间坐标有关的函数,且取决于势

来源: [] [博客] [旧帖] [给我悄悄话] 本文已被阅读: 12次
经典力学的谐振子与薛定谔方程的谐振子解
已有 181 次阅读2011-6-4 14:31|个人分类:随便瞎写|系统分类:科普集锦|关键词:量子力学
初等量子力学中,在讲到薛定谔方程时,一般都会求解几个势场作为范例,其中就包含了谐振子解。刚才在豆瓣上看到有人提问,似乎对这个解的含义不甚明了。
量子力学中的波函数Ψ(t,x,y,z),可以看作一个经典场。这个经典场的特别之处在于其统计诠释,不过在这里可以不管这个。薛定谔方程决定了波函数在时空中的分布,即以(t,x,y,z)为变量,Ψ的函数形式。在定态情形,波函数可分离变量:Ψ(t,x,y,z) = χ(t)ψ(x,y,z),因此定态薛定谔方程其实给定了一个经典场ψ(x,y,z)在空间中的分布。当然这个分布和势能表达式是有关的,因为定态薛定谔方程中有势能项。打个并不贴切的比方:设想有一只碗,碗底形状就好比是势能函数U(x,y),往碗里倒水,每一点的水深h(x,y)就是一个和空间坐标有关的函数,且取决于势能分布。假如碗底的形状有二次形式:U = (1/2)mω(x^2 + y^2),就意味着势能有谐振子形式。倒入一定高度的水(相当于总能量给定),就不难写出此时h(x,y)的表达式。
谐振子的定态波函数解也是差不多的意思,只不过求解过程要更复杂些,最终求得的,是在谐振子这个势场中,波函数经典场的空间分布函数。
定态波函数解和力学中一个动来动去的谐振子有很大不同。定态波函数解的意义已在上面叙述。而经典力学的谐振子,可以理解成一个波包在势场中运动,它的波函数Ψ(t,x,y,z)也是薛定谔方程的解,但却不是定态薛定谔方程的解。
将Ψ(0,x)(只考虑一维,t = 0时的波包)用能量基矢展开:Ψ(0,x) = c_{n}Ψ_{n}(0,x) ,等号右边要对n求和。其中Ψ_{n}(t,x) = Ψ_{n}(0,x) exp(-iE_{n}t),因此Ψ(t,x) = c_{n}Ψ_{n}(0,x)exp(-iE_{n}t) (等号右边对n求和)。这里的含时项不能从和式中提出,因此Ψ(t,x)不能分离变量,也无法得到关于Ψ(t,x)的定态薛定谔方程。但可以计算各能量本征态的演化,叠加而成Ψ(t,x)的演化规律,从而得到波包的运动图像。这个图像可以和经典谐振子做类比


作者:bellbasis 时间:2010-07-18 05:43:08
  说下我的看法,希望对楼主有帮助。
  首先你要理解概率。
  
  1对于粒子,你仍然可以理解成点粒子,但是它出现在一定空间,一定时间,一定动量区间的由概率描述,其概率分布图样表现成波动的外观。粒子沿经典的直线行走,是因为在当前的相互作用下,沿其他路径行走的概率几乎为0。(路径积分的一种解释是走其他路径的概率都干涉相消了)。
  
  2粒子干涉的时候,实际上是粒子出现的概率分布改变了。
  
  3数学上说,粒子由一个抽象的态来描述|phi>, 当我们需要讨论粒子的空间波函数的时候,作用左矢<x|phi> 当我们需要讨论动量分布的时候,作用左矢<p|phi>表征动量分布。所以粒子的空间分布,动量分布,都是由一个态在一种观测下的投影。表示这个投影的函数,就是描述粒子这种概率分布形状的函数(这个函数是复函数,实际上观测的概率分布是要求绝对值平方的)
  
  4,没有相互作用的时候,空间波函数的解是平面波(这是理想状况。实际上任何粒子都是平面波的叠加)有相互作用的时候,可以是共振态,很多短寿命的粒子都是共振态,就是出现极短的时间后,这种特殊的粒子就消失了(衰变成其他相对稳定的粒子)。
  
  5,你只要着重理解概率分布就可以了,它不能预言每个粒子的行为,但是能预言大量粒子的统计行为。而不需要去理解具体一个粒子是如何波动的。
  
  先说这么多。
 
 
作者:bellbasis 时间:2010-07-18 23:34:52
  
  作者:圆周率谐音 回复日期:2010-07-18 20:34:10
  
  首先,你还是要从概率上理解量子力学,而不是波动上。通常的机械波,比如水的表面波,是一个一个挨在一起的水分子震荡,形成的宏观的波动图样。
  概率波(你所说的物质波)是单个粒子在空间中出现的概率幅度对应的图样。不是说这个粒子必须一扭一扭地前进。
  
  我们说概率波,说的是复数的概率波形势,概率波的实际观测量都是绝对值的平方,所以有的时候我们看不见波动效应,只是因为概率波绝对值平方是看不出周期规律的。
  
  举个例子,你观测水表面波的时候,波的振幅对应量子力学的粒子的波函数振幅,但是波上每个质点的能量,对应量子力学观测量。你计算一下能量(平均振幅平方)就发现水面的能量分布式均匀的,没有波的形状。
  
  而发生干涉时,水面有的地方振幅永远是0,就是这里的能量也永远是0,画成能量分布图样,就出现干涉条文了。
  
  所以,根本作用的是波的振幅及其相位(波函数),观测结果是振幅平方的分布,所以相互作用的时候是先叠加波函数,再绝对值平方,这个时候就出现干涉了。
  
  静止只是自由运动的一个变换而已(换个参考系而已)没有特殊性。这是物理学基本原理。
  下面说量子力学。
  自由状态下,动量守恒,所以波函数是exp(-ipx),p是常数,它的绝对值平方才代表可观测的概率,所以是1, 就是说在x方向上个点出现几率相同。所以自由粒子状态下,你看不见“波的图样”,看见的只是一条直线。(波表现在ipx上,因为exp(it)可以写成三角函数,那个是描述波动的,但是因为可观测量是绝对值平方,所以此时观测不到波动的现象)另外,你看不见绝对静止的粒子的绝对位置,因为绝对静止意味着动量为0,而意味着其坐标是无限弥散的(不确定原理),用函数delta(p)表示。
  
  相对论情况下,有相对论量子力学,量子场论表述。波动方程里的变量都是洛伦茨协变的,满足狭义相对论的洛伦茨变换规律。
 
 
作者:bellbasis 时间:2010-07-20 23:35:28
    可见,量子力学中,两种静止的含义是完全不同的。区分了两种情形,一切的矛盾就不复存在。
  ===============================
  这并没有不同的定义,只是因为不确定原理,你不能同时确定一个粒子的动量和位置而已。也就是说你不能找到一个静止的坐标固定的粒子。只能说当你找到一个坐标固定的粒子时,你不知道它的动量是多大。即不知道它是不是静止。
  
  经典情况下,确定动量和位置的手段都很粗糙,所以可以找到近似静止和近似固定位置的粒子。矛盾只在于精度。
  
  实际上,量子力学有3个解释,薛定谔方程,矩阵力学,路径积分。
  第一个和经典类似,很直观,由微分方程表示,只是微分方程的解用量子力学诠释物理意义。
  第二个用更数学化,用于理解量子理学概念,进行形式推导更好。其核心思想是粒子用态矢量表示,算符作用于态矢量,需要和测量联系的时候只是求态矢内积。
  第三个很强大,认为量子和经典效应是所有可能的粒子路径的叠加。但是计算起来并不简单。
  
  实际上第二种一般出现的场合比较多,因为概念明晰。量子场论也可以认为是和空间,动量相关的算符作用于粒子态上的结果。
  
  粒子态是一种抽象状态,可以用动量,坐标等等表述粒子态的特征。该态可以在坐标,动量上投影,其投影为波函数。
  
  所以,更好的描述是,粒子处于一种状态,经过物理算符作用后变成另一种状态,然后和其他状态进行内积求出需要观测的物理量(由一个态到另一个态的几率)。
  
  所以这个时候其实和“波“并没什么关系,只是其概率分布长得很像波而已。
 
 
作者:bellbasis 时间:2010-07-21 16:09:31
  作者:袁士霄 回复日期:2010-07-21 14:30:09
  
  静止的唯一定义是动量为0~ 我没有限定不能实用 delta(x),我只是说delta(x)不是静止粒子而已。
  
  参考系变换,非相对论情况变化的是v,也就是p,p从+变成0 变成-没什么问题阿?很连续阿?(这时请考察该静止粒子的幅度绝对值平方有没有变化,exp(-ipx),无论p是什么,绝对值都是1)相对论情况,波矢和坐标p,x都是协变/逆变的,px是标量和坐标变换无关,所以和非相对论情况一样。
  
  我前面说过,测量量是振幅的绝对值平方,不是波动复数表达形式本身,楼主把它的平方安参考系变换,再看看有没有变化(那个才是可以和经典类比的东西)。
  
  我一直强调,要理解量子力学,要从态和概率上理解,波动表达形式只是选择参数空间后的一种数学展开(数学描述),并不是本质的。所以不要纠结于和机械波进行类比。2者没有关系 。只是量子力学的数学形式在某些特殊的态下呈现波动的特征而已
 
 
举报 | 回复
作者:bellbasis 时间:2010-07-22 03:09:45
    bellbasis你说<"所以这个时候其实和“波“并没什么关系,只是其概率分布长得很像波而已。>
    本帖子就是说波的,量子力学也从有波起家的,所以把"波"一脚踢开,总有些不厚道,我认为这可不仅仅是吃水不忘挖井人的一个问题,所以你应该像袁怪侠那样说"并不能因此而认为:物质是主体,波只是它的附属。",呵呵.
  
  =================
  是这样的,也许早期理论探索阶段需要借助波动来理解量子力学,但是当体系完善之后并不需要时时考虑这种事情,波动的“效应”包含在解之中。波动形式的引入只是一种中间状态,整个逻辑出发于粒子态,终结于测量的物理量。波动只是中间的数学手段而已。
  还有,位置不确定和静止不矛盾。位置不确定说的是你不知道它静止在什么地方,但是它是静止的。对于无数个粒子统计平均后,你会发现这些粒子均匀分布在空间中。这来自量子力学的基本原理。这种效应只有在极其微观才能发现。过度到经典的时候,你不能找到这么一个动量非常精确的平面波,那么你也就可能找到一个位置不那么弥散的准静止粒子,同理,对于delta(x)的情况,经典的情况是你不可能找到一个delta(x)的粒子(位置测量没那么精确)比如可能是一个高斯波包,那么粒子被限定在一个小范围内,同时也允许你测量它的动量,可能也是一个中心在0的高斯波包,那么就是说你能在一定精度内看见一个准静止,准固定位置的粒子,这就是我们的日常生活。
  
  实际上,delta《-》exp(-ipx)是2种极端精确的情况。只有在微观尺度下,才能看见这种极端精确的现象。
 
 
作者:bellbasis 时间:2010-07-22 16:06:20
    作者:bellbasis 回复日期:2010-07-22 03:09:45
    bellbasis你也一定程度的认可“高斯波包”对应粒子实在,可怪侠不这么认为,这可不能含糊,这是个很根本的问题,不仅仅是个认知论问题,而是从根本上认知世界的出发点的问题,他是对构建什么更本质性场论以及物理何去何从的方向性问题。当今在科学界对“高斯波包”的认可度能占几成呢?
  
  
  ====================
  ....................在粒子物理里面,探测器观测到的物理量都是这种高斯波包……因为探测器的精度是有限的。
  
  袁前辈的意思是,一个函数可以fourier展开成平面波叠加,例如delta(x)展开成exp(ipx)的叠加,无穷个动量各不相同的平面波叠加。这只是一种数学手段。我们是否观测到这种平面波(哪个动量分量)取决于我们是否需要测量动量……如果不需要的话,跟本不需要展开。我不知道你对fourier展开有多少了解,但是这和量子力学无关,这只是一种数学而已,在电子电路里面经常用到(当然还有laplace变换),你先想一想这种变换在电路中对电信号的处理,能不能理解,能不能通过你的逻辑。高斯波包的fourier对应变换是高斯波包,所以我们能同时测量坐标和动量(一定精度上)。
  
  另外,我觉得你的问题还是没有理解静止的定义,delta(x)和delta(p)的区别在哪里。如果我们不谈论delta(x),就没有以上问题了。还有,我强调无论粒子以什么波形出现,那只是概率分布图样,不是粒子就是那个样子的……
 
 
作者:bellbasis 时间:2010-07-22 19:19:35
    作者:bellbasis 回复日期:2010-07-22 16:06:20
     ================================
    在一般意义上可用数学方式无穷级数展开,但这里好像不是首先对一个成型函数的展开,而是直接假想出的一种跟数学无穷级数类似的数学模型,当然也只有这样,才能所谓解决类似孤波子不散的理论基础.所以在这里一切都好像本末倒置了,而按你说的,它是对一个什么样子函数实施无穷级数展开的呢?
  =============
  能使用这个模型,来自于量子力学的基本假设之一,x p的对易关系(p的算符化)。
  如果承认这点,后面的都是自然的事情了。
  
  我觉得你一直没明白一件事情,粒子还是粒子,一个粒子不会“散开“即使是平面波。
  散开的是粒子出现的概率分布,不是粒子本身。
 
 
作者:bellbasis 时间:2010-07-22 20:09:32
  作者:圆周率谐音 回复日期:2010-07-22 19:41:32
    作者:bellbasis 回复日期:2010-07-22 19:19:35
    ========================
    你可能理解错了我说的"散开"这个意思了.
    用于表示能量消散,产生辐射,损失能量,只要涉及到波的稳定,这是首当其中考虑的.
  ===========================
  关于能量变化的问题,量子力学认为,最基本的是粒子态,当态不变的时候,能量也不变,能量的变化(态的变化)必然来自于外界的相互作用。辐射的产生来自于,比如一磁场中运动的电子,时刻和磁场(光子)交换着能量。电子的态发生连续变化,那么可能产生辐射。
  束缚态的时候,电子可以存在的态是分立的(薛定谔方程的解),意味着不是任何能量的光子都能使得电子从一个态变成另一个态,那么大多数时候也就没法辐射了。
  
  也许你对量子力学的一些基本假设产生疑问?那么只能说实验证明了这些假设的正确,
作者:bellbasis 时间:2010-07-22 20:19:24
  你试试这个逻辑
  
  量子力学基本原理-》薛定谔方程的解-》电子可以存在的状态(其他状态概率为0)-》氢原子情况下是分立的状态的概率分布||自由电子情况下是连续平面波状态的概率分布(只有这里才出现了波)
  
  所以物质波只是一种早期想法,只是量子力学的一个解。你要问氢原子情况下的相速度是没什么意思的,氢原子情况下是只是一种特殊的分布而已。当然这时粒子的速度是可以求得的,但是和平面波没有什么直接关系。
 
作者:bellbasis 时间:2010-07-22 20:31:52
  束缚态的时候,电子可以存在的态是分立的(薛定谔方程的解),意味着不是任何能量的光子都能使得电子从一个态变成另一个态,那么大多数时候也就没法辐射了。
  =======================
  少数的时候是光子能量刚好等于能级的差别……
 
 
作者:bellbasis 时间:2010-07-22 20:37:43
    作者:bellbasis 回复日期:2010-07-22 20:19:24
    你在量子力学里舍弃"波"的概念,就像谈论电脑舍弃与或门等电路,舍弃二进位制,从表面上看,你是正确的.
  
  ==================
  不一样,撇开数学,波本身不是什么基本的东西,一大堆粒子相互作用的集合的现象而已。
  何况概率波和机械波没什么关系,只是用了同样的数学而已。
  概率波的效应包含在量子力学的解里面。
  
  好比我们讨论电脑的工作原理,却不需要讨论office2003有什么问题一样。哪怕也许有的人第一次接触电脑用的是office2003
  

作者:bellbasis 时间:2010-07-22 20:41:28
    作者:bellbasis 回复日期:2010-07-22 20:31:52
        少数的时候是光子能量刚好等于能级的差别……
    ===============================
    如果用刚好这个说法的化,世界上没有刚好的能级光子来碰的,所以,也就不可能发生态的跳跃
  =============================================
  我们不可能完全处于绝对精确的那种能级的本征态(实际上是有宽度的,不过和能级之间的宽度相比很小而已),还有实验精度问题。而入射光子也不是单纯平面波,其动量是一个高斯分布,涵盖了需要跃迁能级的区间就可以了。
 
 
作者:bellbasis 时间:2010-07-22 20:48:20
  作者:圆周率谐音 回复日期:2010-07-22 20:41:55
    所以把波当成敲门砖,不可能那么侥幸,肘起裤子不认帐,没那么容易.
  ===========================
  科学研究早期的摸索阶段用一些类比是很正常的,但是类比不是等同,你明白这点就可以了。其中最大的不同在于,机械波必须有介质,是介质中物质的相互作用效应,但是概率波不需要“介质“它只是概率分布而已。
 
 
作者:bellbasis 时间:2010-07-22 21:12:40
  那么请问你,除了数学形式之外,量子力学哪里必须要用波的概念了?
  定态的解无非是列出方程之后解方程而已。其解是驻波形式而已。其他更多情况下的解都不是驻波或者平面波形式,非要用波的概念去强行理解这些解么?那只是一种概率分布图样而已。
  
  
作者:bellbasis 时间:2010-07-22 21:23:53
  举个例子,伽利略证明2个质量不同的物体可以同时落地,牛顿力学完全可以解释这一现象并给出其他推测,诸如人造卫星运行轨迹。但是你如果要用2个质量不同的物体同时落地去理解为什么人造卫星是这么运动的。当然理解不了。因为你的出发点就不是根本的,只是一个结论而已。所以你用驻波和平面波去理解氢原子基态波函数,谐振子波函数,肯定不明白了。
 
 
举报 | 回复
作者:bellbasis 时间:2010-07-22 22:15:25
  量子力学基本原理
  1: 态矢量描述例子态
  2: 算符描述物理量
  3: 对易关系
  4: 薛定谔方程
  5: 全同粒子原理。
  足够了解方程了。
  不需要引入波的概念
 
 所以说波粒二相性,关键在于“相”上,只是一种观测结果,不是本质。其本质就是由概率描述的粒子而已。所以科普的时候很多人以为这种矛盾综合的结果是本质,实际上不是。
 
 
bellbasis 时间:2010-07-22 23:16:54
  
  作者:圆周率谐音 回复日期:2010-07-22 22:50:49
    说简单些,定态是量子力学的最重要工程目标,而定态的理论基础是驻波,你说波算老几呢?
  ===================
  无所谓,方程和边界条件列出来了,解出什么是什么,解出驻波是驻波,解出合流超比函数就是氢原子。这只是一个数学问题。一个概率分布函数而已。我没有否认量子力学采用了波的数学形式。但那并不重要。一个量子系统重要的是我们知道概率分布和物理量(平均值),波的数学形式只是中间过程。
 
 
作者:bellbasis 时间:2010-07-27 23:51:45
    作者:袁士霄 回复日期:2010-07-27 17:22:07
    ==================
    薛定谔定态方程的建立确实没有直接借助当时由驻波计算出的各种能级公式,这一点我确实说错了,但薛定谔在建立薛定谔定态方程的时候使用了,Ψ(x,t) = ψ(x)f(t),而ψ(x)f(t)的数学形式所形成的图像Ψ(x,t) 应该是一个驻波数学图形,所以薛定谔也毕竟是根据当时依据驻波定态的思维模式,殊途同归,并有摘取别人成果果实的嫌疑,而建立的定态薛定谔方程。请你给进一步评述。
  
  ================
  关于薛定谔方程的建立,先猜出自由粒子对应平面波,然后根据H=P^2/2M ,猜出p对应的算符和t对应的算符。得出自由粒子薛定谔方程。这个时候,你也学可以说借鉴了波,(自由粒子是平面波么),但是引入势能项之后,方程的解就五花八门什么都可以了,平面波或者驻波很多时候就没法解释了。所以楼主有疑问。这个时候,就是纯粹的解方程了,和什么波没什么关系了。
  
  所以当量子理学体系完善以后。我们喜欢用算符做基本假设,而不是平面波做基本假设。因为算符的基本假设逻辑上更根本。平面波只是一个解,驻波也只是一个解,更多时候是非常复杂的乱七八糟函数的解。
 
 
作者:bellbasis 时间:2010-07-28 01:07:36
  作者:圆周率谐音 回复日期:2010-07-28 00:11:20
    作者:bellbasis 回复日期:2010-07-27 23:51:45
    =====================
    方程是人脑思维判断推理的继续,但方程必须有很多的基本数学原理来构建。但人们单靠数学原理也能解决很多的问题,比如民间有很多的数字数学游戏,他们虽然不懂方程,但只要足够聪明,他们也能得出结果,而我们知道这类问题使用方程一般再简单不过了,这就说明方程这个工具的威力,但这种威力跟其建构方程的原理是两码事。
  
  ====================
  实际上是这个思路:
  1: 观测实验,觉得粒子有波动性,猜测自由粒子是平面波,并做一些简单预言。
  2: 通过平面波,和薛定谔方程(H|psi>=E|psi>,这个方程很抽象,解决不了任何问题),猜测这个抽象方程的现实对应,即p为坐标的偏微分,E为时间的偏微分。即确定力学量和算符的对应关系。
  3:写出H的一般形式,即H包含任何形式的势能。利用偏微分算符,原则上可以解出任何波函数的解,但是这个解不一定是平面波或者驻波,可以是任何东西(引入势能是经典力学哈密顿量要求的,必须有动能项和势能项,你的一切分歧都来此于此,但是这一项是经典要求,不是量子要求)。
  4:实验验证一些复杂的解,比如氢原子,比如谐振子,等等,发现和实验相符。
  5:确立力学量对应算符作为基本原理。
  
  
  类比一下这个逻辑:
  1, 牛顿看见重物下落
  2, 牛顿认为万有引力
  3, 牛顿观察开普勒3定律觉得万有引力是平方反比(不记得是不是这样了)
  4, 牛顿确定万有引力公式
  5, 万有引力公式作为牛顿力学基本原理之一
  
  最初得到定律的时候,需要一些启发性思维和类比(比如你所说的数字游戏),(比如波动的引入)但是不代表一开始的启发性思维就是整个理论框架的基础。苹果,开普勒3定律都是基本定律描述现象的一个子集,但是他们不能描述其他的东西,所以不是基本的。所以说平面波和驻波有他们存在的地方,但是绝对不是基本的。试图用这个解释一切,是不可能的。
  
  在接触未知世界的时候,第一次观察(接触)会让我们有很多灵感,对于暂时不能列出方程描述的东西,我们会用类比去描述未知事物,但是当充分了解之后,必然有更基本的概念,第一次看见的东西仅仅是微不足道的一小部分而已。你理解了么?
  
  所以你跟着物质波的思路历程,经历的只是发现定律的原初思维,而不是看见了完整的量子力学框架。其实很多科普的手法就是如此的(因为框架总是要涉及方程,方程总是枯燥的),比如非常经典的时空的弯曲用一个膜来描述,但是你能用一个重物和膜去真正计算出黑洞的引力场么?无论你怎么摆弄那个重物恐怕都不行吧。
作者:bellbasis 时间:2010-07-28 01:29:48
  所以说,原初发现定律的时候的思路,和科学体系成熟时的思路是完全不同的。原初发现定律的思路是非常难以理解的,那都是天才的思维,一些结论虽然怪异,但是居然是大部分是正确的。当体系成熟以后,我们不需要天天用那种思维去解决问题。


PDF]PDF全文 - 热学精品课程
kejian.tzc.edu.cn/ckwx/pdf/268.pdf
轉為繁體網頁
由 包科达 著作 - ‎被引用 6 次 - ‎相關文章
矩阵),把系统所有可允许的态,成对地联结起来. 量子力学的倒易定理[5]证明:当系统的哈密顿量与时间明显无关时,由时. 间反演对称性可引出原过程的跃迁概率 ...
 
 

 

对称性和热学*

包科达1) 刘锦城2)

摘要 试图探索一条不同于传统做法的、概括和表述热学基本定律的途径.从理论上,把热学置于对称性原理的基础之上,加以概括和解释 关键词时间和空间平移对称性;时间反演对称性;守恒律;对称破缺 分类号 O 414.1

SYMMETRY AND HEAT

Bao Keda1) Liu Jincheng2) ( 1) Department of Physics, Peking University, Beijing, 100871, China; 2) Pingxiang Specialized School, Pingxiang, Jiangxi, 337055, China)
Abstract In this paper we try to explore a way for summalizing and expressing the fundamental laws of heat, entirelly different from the usual practices. The heat will be generalized and described on the principles of symmetry. Key words time and space translation symmetry; time reversal symmetry; conservation law; symmetry breaking
1 引言
对称性原理在物理学中的基础地位,正越来越受到物理学家的重视从单纯地将对称性看作对物理现象可能性的一种限制,转向把它作为确立物理定律的一块基石.整个物理学的发展,就是物理学家通过大量精确的实验观测和深入的理论分析,揭示各种制约自然界物理现象的基本规律,例如力学的牛顿三定律,热学的热力学第一、二、三定律,电磁学的麦克斯韦方程组等.近年来的研究揭示,贯穿于物理学各分支领域里的这些规律中,还存在一些概括性更高的法则,对称性原理就是其中主要的一个.诺贝尔奖得主和对称性原理的主要阐述者之一的Eugene Wigner[1]把对称性与自然定律之间的关系,类比于自然定律与单个事件之间的关系时说:・对称性原理为自然定律提供的构造和相关性,恰似自然定律自身为一组事件提供的构造和相关性.・那末,对称性原理与热学或热物理学(包括热力学和统计物理学)之间有什么关系?我们能否把对称性看作制约热物理学建立和发展的、概括性更高的法则换句话说,我们能否从对称性原理出发引出热学的基础定律?本文试图就此作一些剖析,以引起各界的关注和讨论
2 对称性
尽管可以认为,对称考虑从科学思想产生和发展的一开始,就是科学家的一个基础性的考虑,但直到20世纪量子力学建立和发展之前,对对称性的认识,多数仍仅限于直感的事物对称性的几何方面,把它看作限制物理过程的一种可能性.例如:圆球绕通过它中心的任意轴的转动是对称的;它对含中心的任意平面的反射和对通过中心的反演是对称的;一个立方体绕通过面心轴的四度旋转下是对称的.由于圆球在旋转任意角度下是对称的,旋转角可取任意值,因此圆球的旋转对称性是连续的;反之,上述立方体的旋转对称是离散的.即使依据这样一
些简单的对称性概念,人们就可以避开物理学基本定律,而对物理现象作出合乎实验观测的分析,例如:由简单的对称性分析可知,有心力作用下的行星轨道一定在一个平面内;平衡态气体的时空对称性必导致麦克斯韦的速度分布律;利用对称性可证明,无限长均匀带电直导线周围的电场必垂直导线表面,且呈径向分布;无限长密绕螺线管在空间任意一点产生的磁场与其轴线平行等等. 然而,稍为深入分析几何对称性就会发现,每一个几何对称性在数学上可用一种坐标变换来加以描述,例如对-y平面的反射操作,对应于x→x′,y→y′和z→-z′的变换;而绕轴的四度旋转操作,可通过→y′,y→x′和z→z′加以表述.上述圆球和立方体相对这两种操作都是对称的,这一事实反映在圆球方程和确定立方体的数学关系式相对上列两种变换是不变的. 现若将从几何对称性获得的有关对称性、对称操作和坐标变换等概念,推广应用到更为普遍的情况:一组变量的一种变换定义一个对称操作,若这些变量的函数通过变换后的形式不变,那末就说此函数相对这种操作是对称的.这样,若表述一个物理定律的数学公式在与某种操作相应的变换下保持不变,则该定律相对此操作是对称的.最常用的对称操作有平移、转动、镜像反射、标度变换等空间操作和时间平移、反演等时间操作.例如:对于一个其中的力只是位置函数的力学系统,牛顿运动方程f=m(d2r/dt2)在时间反演操作(r→r′,t→-t′)下是对称的,叫做时间反演对称性.它预示系统中允许的任何运动,必有逆向的运动设想有一盒录像带,记录了月球上宇航员抛射向上的一个球,随后在引力作用下落到表面.那末,不论是正向还是反向放映这盒录像带,观众看起来,都是等同的.而地球的大气层中存在的粘滞阻力,破坏了这种时间反演对称性.由此可见,一个特定系统的动力学行为的对称性是受到动力学方程和决定力的势能函数的性质所制
约的.对于量子力学问题,尽管动力学方程变得略为抽象,牛顿运动方程为薛定谔波动方程所取代,但对称性原理是相同的,薛定谔方程相对时间反演操作也是对称的.
3 内特(Noether)定理
把上述对称性分析应用于力学系统时发现,由此可以引出一些意义深远的结果:一个力学系统动力学行为的每一个对称性都意味着该系统的一个守恒律,这个结论现在称为内特定理,以纪念首创人德国数学家Emmy Noether(1882~1935年). 任何系统的机械运动都是在一定时空中发生的,故当描述一个系统的机械运动时,总是相对一定参考系说的.一般说,不同参考系中的运动规律,不尽相同.惯性参考系是最简单的一种参考系,其中时空是均匀和各向同性的,自由物体在其中或永远静止,或以恒速作直线运动 惯性系中的时间均匀性,要求其中发生的机械运动相对时间的平移操作变换→t+t0不变,即具有时间平移对称性.在物理上,这意味着,若保持封闭的质点系中每个质点的初始位置和速度不变,系统的动力学行为并不会因时间平移而改变由此时间均匀性引出的后果是,封闭系统的势能函数Ep与时间明显无关,即()=0,从而得到dEp=,故封闭质点系的机械能守恒:恒量,这样,内特定理从时间平移对称性预言存在一个守恒量,称它为系统的能量[2].相应的,空间均匀性和各向同性要求惯性系中发生的动力学行为,相对空间平移操作r→r+r0和转动操作φ→φ+φ0不变,即具有空
则系统的运动状态不变,故系统内力在此位移下所作的总功应为零:,从而引出牛顿第三定律=0,得到封闭质点系的动量守恒定律.空间转动对称性要求空间各取向等效,故角位移δφ后系统内力的总功应为零:,即系统的总力矩为零,从而得到封闭质点系的角动量守恒定律.综上所述,对于一个互作用势能只与质点之间相对位置有关的质点系的时间、空间均匀性及其各向同性的深刻物理后果是系统的能量、动量和角动量守恒,这恰是内特定理要说明的. 倘若我们再依据因果律,把时空均匀性和各向同性,即时空平移对称性和转动对称性,看作原因的对称性,而系统的能量、动量和角动量守恒律看作结果的对称性,则可引出结论:原因中的对称性必反映在结果中,这就是对称性原理,首先由P.居里于1894年提出. 间的平移和转动对称性.空间平移对称性要求空间各点等价,即若有一个封闭的力学系统,其中所有的质点都位移δr,Fij+Fji[3]
4 时间平移对称性和热力学第一定律
两者之间的关系是显而易见的,因为后者表明,对于任一热力学系统必存在一个态函数内能,对于孤立系内能守恒.从微观的意义讲,系统的内能就是组成它的所有粒子的无规则热运动的动能和它们之间相互作用的势能之和. 对于系统的温度、体积和粒子数恒定的正则系综,内能是一个可涨落的量.由于宏观物体包含的粒子数十分巨大,宏观观测的时间和空间的特征尺度较之原子、分子运动的相应特征量大很多,故实验观测到的内能仍取确定的数值,是系统能量的统计平均值,与时间无关 当我们在时间平移对称性基础上,重新认识能量守恒定律时,再简略回顾一
下人们对它的发现和认识是富有启发性的.确认守恒量能量的存在,始于1693年,当时莱布尼茨(Leibniz)观测到,地球重力场中质点的能量(1/2)mv\+2+mgh是一个守恒量.随后的物理学史上不止一次地发生过,在新的物理过程中似乎一部分能量湮没或者无中生有地产生出来,后来的物理学发展又总能确立一种新的能量形式,补偿似已消失或冒出来的那一部分能量,能量守恒定律始终巍然屹立.例如焦耳(Joule)经过几十年的艰辛努力,测定了热功当量,确认热也是一种能量存在的形式.带电体周围的电场具有电场能.燃烧获得的热量来源于物质结构的化学能.1905年爱因斯坦(Einstein)把能量与物质的静止质量联系起来,导出了著名的质能关系式E=mc2.不久,物理学家发现,原子核裂变过程中释放出的能量与相应的质量亏损是符合此关系式的.特别值得一提的是,为了解释β衰变过程中消失掉的那一部分能量,泡利(Pauli)于1931年提出伴随核内中子蜕变为质子和电子的同时,必有一种未被认识的粒子;后来意大利物理学家费米(Fermi)把这种中性且静止质量为零的粒子命名为中微子,从而找回了那一部分丢失的能量,能量守恒定律依旧成立.
5 空间平移和转动对称性与广义的热力学第一定律
当我们确认内特定理,把热力学第一定律和存在态函数内能寓于时间平移对称性中时,自然会联想到,共有7个可加的运动积分,为什么只有能量在热学中起重要作用?而不是动量和角动量?事实是由于传统的因素,我们惯于讨论宏观静止的系统一旦当天文学家应用热物理学于旋转的巨大天体,如银河系时,系统的动量和角动量的作用,将和能量一样,变得十分重要.一个广义的正则系综的概率密度ρi(Ei,pi,Ji,V,N)可写为
ρi=Z-1exp(-βEi-λp.pi-λJ.Ji)
其中Ei,pi和Ji分别表示系统微观态的能量、动量和角动量;而β、λp和λJ分别为相应量的拉格朗日乘子;Z(β,λp,λJ,N,V)是配分函数.因此,广义热力学第一定律应该是时空平移和转动对称性的一个后果.
6 对称破缺和戈德斯通(Goldstone)定理
热力学中还存在一些状态参量,如体积、磁矩、电矩和摩尔数等,它们又是如何从对称性分析中产生出来的?回答是它们存在的基础是对称破缺和戈德斯通定理.譬如体积这个几何状态参量,它与对称破缺概念的联系,可通过晶体的形成过程加以说明.以固态的二氧化碳干冰)晶体为例,在・无限大・的气态O2中,随温度下降而在某局域形成晶核的过程,从对称性观点看,是系统从一个具有连续的完全对称性的气态转变为一个只有离散的较低对称性的固态的过程.在这类晶核化过程中,系统对称性突然自发地降低,称为系统的对称性的・破缺・.从固体物理学我们知道,晶体的振动模式可用波数k=2π/λ和圆频率ω(k)加以描述.长波模式变为简单的声波,并有线性关系ω=vk,故极端模式是在空间均匀的模式,振动频率趋向于零.此时半波长内就包含很多原胞,它们整体地沿同一方向运动,因此晶体可以近似地看成连续介质,而且具有确定的体积著名的物理学家P.W.安德森(Anderson)把这种对称破缺系统具有一个激发谱,当波长趋向无穷时,频率趋向零的性质概括为戈德斯通定理[4]. 相类似地在一些电极化材料例如HCl晶体中,位于格点上的HCl分子中,氢离子围绕相对大的氯离子转动,形成电偶极矩.在转变温度以上,这些电矩的取向是无序的;转变温度以下,偶极矩取向趋向有序,整个晶体拥有净电矩.晶体
从具有较高对称性的状态自发地降低对称性,转变为电矩具有确定轴取向的较低对称性的状态根据戈德斯通定理,这种对称破缺必将导致一个波长为无穷时零频率的元激发在极化晶体中,这类元激发由在净电矩指向附近轴的微小摆动形成的振荡波组成.类似的情况,在居里点附近的铁磁材料中也发生,从而在磁介质热力学中可以引进状态参量总的磁矩.
7 时间反演对称性和细致平衡原理
最后,我们用对称性原理来审视统计物理学的基石・・等概率原理:孤立系达到平衡态时,系统处于任一可能微观运动状态的概率相等.恰是在等概率原理的基础上,才引出了微正则、正则和巨正则分布的极值性质,即在相应的宏观限制条件下,这些分布对应的微观态数目Ω最大,再把熵定义为正比于ln Ω的态函数,从而得出达到平衡态的系统熵最大,构成热力学第二定律的熵增加原理的表述. 一个热力学系统的可允许的微观态,在经典描述中,可用6N维相宇空间里的一个相点表示;在量子描述中,用系统可存在的量子态表示.当系统在外界的扰动下发生微观态之间各种可能的跃迁时,在相宇中勾划出一条迂回曲折、飘忽不定的轨迹.若系统某时刻处于i微观态,随后在外界扰动下跃迁到j态,单位时间里的跃迁概率为ij,这些跃迁概率{pij}在状态空间中构造一个网络在数学上表示为矩阵,把系统所有可允许的态,成对地联结起来. 量子力学的倒易定理[5]证明:当系统的哈密顿量与时间明显无关时,由时间反演对称性可引出原过程的跃迁概率等于逆过程的跃迁概率,即pij=pji.统计物理学中把此倒易定理称为细致平衡原理,它是时间反演对称性的直接后果.显然
是条件概率,表示开始处于i态的系统跃迁到j态的概率.故若用f表示系统处于态的概率,则单位时间里跃迁离开状态的总数正比于;相类似地单位时间里跃迁到状态的总数与成比例.若再考虑到平衡态系统处于i态的概率在时间里是稳恒的,则有 piji
当满足细致平衡时,则对所有状态有fi=fj=Ω-1,这就是等概率原理. 可以设想如此的图象:系统在一切可允许的微观态之间发生各种可能的跃迁,某些态被频繁地访问很大),另一些只偶尔被访问;一些状态一旦被系统达到后,不易变更(很小),又有一些状态却要求系统赶快离开它.但由于时间反演对称性,要求达到平衡态的孤立系中,那些只偶尔被访问的态,一定是系统不易变更的态;而那些频繁被访问的态,只允许对它的短暂入主.恰是这种互相抵消的特征,保证了系统处于任一可能微观态的概率相等.由此可见,等概率原理是系统时间反演对称性的一个后果.
8 对称性和选择定则
应用等概率原理分析实际问题时,还必须注意出现零跃迁边界的可能性.零跃迁边界把系统的状态空间譬如说相宇,划分为两个区域,其间不能发生穿越零跃迁边界的跃迁量子理论证明,出现零跃迁边界的物理原因是另一种对称性发挥了作用,并把这种跃迁概率为零的现象称为选择定则实际上,选择定则映射一种对称性,起源于守恒律[6].譬如,由空间平移对称性引出的动量守恒律要求的选择定则为:末态动量等于初态动量加微扰动量时,跃迁才会发生,否则跃迁
概率为零.由时间平移对称性引出的能量守恒律要求的选择定则为:终态能量等于初态能量加微扰能量.又如在有心力场中运动的电子的选择定则为:角量子数Δl=l′-l=±1,磁量子数Δm=m′-m=0,±1等. 由此可见,为了使热力学的描述完全且有效,必须将能表征状态空间各个分隔区域的全部状态参量包括进来,否则就会引出与实验不一致的结论例如,人们在研究低温下气态氢的热学性质时,就曾发生过这类情况[7].氢分子的两个核的自旋,可因其取向平行或反平行而区别为正氢和仲氢它们的对称性很不相同,前者相对于垂直分子轴的平面的反射操作是对称的,而后者只相对分子中心的反演操作才具有对称性.选择定则禁止两者之间的转变,故若忽视了这一选择定则,就会导致热力学的不完全描述,引出氢气热力学性质的不正确预言.有趣的是,实验表明,若在氢气中掺进少量的氧或水蒸汽,由于这些气体分子的顺磁性,与氢分子核自旋之间的相互作用,破坏产生选择定则的对称性,从而使得正氢和仲氢之间可互相转变,把氢处理为单一气体的热力学描述又变为完全和有效. 因此,热力学描述的完全性在于确定系统的相关的状态空间时,必须考虑它的所有的对称性.每一个新揭示的对称性,在引进新的状态参量的同时,将热力学的应用范围扩大.从此意义上讲,是否可以在对称性原理的层次上把热物理学概括为一门研究从物理系统的对称性引出的,对物质的热运动可能具有性质的制约的学科.
作者单位: 1) 北京大学物理系,北京 100871; 2) 萍乡专科学校,江西萍乡337055 *原国家教委面向21世纪教学内容和课程体系改革研究项目(编号02-4-5)
9 参考文献
[1] Wigner E. Symmetry and Conservation Low. Physics Today, 1964,34 (3) [2] Мамъееъ А Н.Механпка ц Теорцл Омноспмеlъносмц.20e u3g. u3g. 《Внсшал шкоlа》,1986, 148 [3] 赵凯华,罗蔚茵.新概念物理教程 第一卷:力学.北京:高等教育出版社,1995.146 [4] Anderson P W. Concepts in Solids. N.Y: Benjamin Inc, 1964. 175 [5] 张启仁.量子力学.北京:高等教育出版社,1989.286 [6] 邹鹏程.量子力学.北京:高等教育出版社,1989.第六、七、八章 [7] Callen H B. Thermodynamics and an Introduction to Thermo-statistics. second edition. John Wiley & Sons, Inc, 1985
收稿日期:1998-06-15
 
 
 

No comments:

Post a Comment