Saturday, August 15, 2015

Rindler坐标 如果把一根细杆放在原点右方的x轴上,然后让每点以x坐标的倒数为加速度做匀加速运动,我们就会得到一个波恩刚性运动。它的特点是,越靠近杆子右端,加速度越小;越靠近左端,加速度越大。就是说,左边必须用更大的加速度追赶右边才能保持距离不变。并且杆子左端趋向于原点时,需要的加速度会趋于无穷大!

如果把一根细杆放在原点右方的x轴上,然后让每点以x坐标的倒数为加速度做匀加速运动,我们就会得到一个波恩刚性运动。它的特点是,越靠近杆子右端,加速度越小;越靠近左端,加速度越大。就是说,左边必须用更大的加速度追赶右边才能保持距离不变。并且杆子左端趋向于原点时,需要的加速度会趋于无穷大!

(继续相对论中的刚性)

例子一:匀加速直线运动下的波恩刚性。

考虑一根与x轴平行摆放的细杆(我们不妨认为它就跟x轴的某一段重合,或者说就是x轴的一段)。我们希望让这个杆子沿x轴从静止开始向右(x轴的正向)做加速运动,并且同时保持波恩刚性。通过前面的讨论我们已经知道如果只是在右端拉或是左端推都会让杆子发生形变,并且这个形变会以音速传递到另一端,而在形变传到之前另一端还是静止的。所以这个过程不可能让杆子具有波恩刚性(因为有一端仍然适用静止参照系的度规,而形变的杆子在静止系中的长度显然已经改变)。

利用同样的推理过程,我们可以看出唯一可能让杆子在运动中具有波恩刚性的办法,是对杆子上每一个点同时加速!波恩选了个最简单的做法,就是让每点做匀加速运动(准确地说,是具有恒定“固有加速度”(proper acceleration)的运动,所谓固有加速度是随动系中测得的加速度。以下的匀加速都是指固有加速度不变,但这个细节对大家理解问题没有影响)。

波恩从最简单的情形出发,首先考虑x轴上单个质点向右作匀加速运动的世界线。他发现跟牛顿力学中类似,这条世界线也是一条圆锥曲线,但牛顿力学中得到的是一条抛物线,而在闵氏时空中得到的是一条双曲线。于是波恩就把这样的匀加速运动取名为“双曲运动”(hyperbolic motion)。波恩还发现,假设加速度为a,当他把坐标原点取在质点左边(1/a)个单位的位置上时,这个方程有很简单的表达式(以下我们都调整单位使得光速c = 1),就是 x^2 – t^2 = 1/a^2 (这里 x^2 表示x平方)。这是个以1/a为半长轴,以光锥 t = x
为渐近线的双曲线。如果对杆子上每点我们都用该点到原点距离的倒数作为加速度,那么我们会得到如下图所示的曲线族(看到这个曲线族熟悉的人估计马上想到Rindler坐标):


(图的来源是http://mathpages.com/home/kmath422/kmath422.htm

巧妙的是,任取一条双曲线,并且在这双曲线上任取一点,代表该点的随动坐标系的直线正好经过原点(图中的直线族)!而前面的双曲线方程左边正好成了随动系中该点到原点的长度的平方,所以每个质点在运动过程中到原点的距离在各自的随动系中没有变,都是加速度的倒数1/a!这说明从任何一个质点的随动系看,杆子的长度都没有变过,所以这符合波恩刚性的要求!上面图中的红色部分就是杆子的世界线在加速中的不同位置。

好了,用口语代替数学公式的活儿干完了。如果你已经完全迷糊的话,下面是总结:如果把一根细杆放在原点右方的x轴上,然后让每点以x坐标的倒数为加速度做匀加速运动,我们就会得到一个波恩刚性运动。它的特点是,越靠近杆子右端,加速度越小;越靠近左端,加速度越大。就是说,左边必须用更大的加速度追赶右边才能保持距离不变。并且杆子左端趋向于原点时,需要的加速度会趋于无穷大!

所以一旦杆子右端的加速度确定,原点的位置就确定了(往左移1/a,这也说明坐标系的选取没有特殊性,只是简化计算而已),而这也给杆子长度加了限制,因为左端不可能到达原点。所以棍子长度不能超过右端加速度的倒数。这是波恩刚性给匀加速运动的细杆所加的限制。



    • fishwoodok借助数学工具,作出如此奇妙的构思,太有才了!
      2012-8-28 03:02回复
    • fishwoodok回复 fishwoodok :这会儿我想起了“规划”二字,事实上做规划是一件很难的事情。波恩的规划做得太妙了。
      2012-8-28 03:05回复
    • 坂上中微子顶,顺便贴出我以前那篇讨论这个问题的贴: http://tieba.baidu.com/p/1754051279
      2012-8-28 03:11回复
    • wolfking97回复 坂上中微子 :那个帖子讲得挺好的。跟这里描述的其实都是波恩刚性,只不过没用具体公式,可能对初学者反而容易理解。那里唯一模糊一点的是先提到了“让棍子的各个部分同步感受到一股相同的加速度”,下面又说后端要有更大的加速追赶前端,可能有个别细心的会觉得困惑。我是看到后面就忘了前面。
      2012-8-28 09:54回复
    • 坂上中微子回复 wolfking97 :所以我特意指明了“感受到一股相同的加速度”的确切含义,如果细心,在看完后面的论述也就明白了。
      2012-8-28 21:33回复
      • 坂上中微子本来我这个思路也只不过是简单的把三维中的刚体“两点距离不变”这一定义中的三维概念代之以四维,唯一有那么点技术含量的只是找了固有时这一四维标量作为参量,没想到误打误撞和波恩不谋而合
        2012-8-28 21:36回复
      • 坂上中微子所以我很想知道的是波恩刚性在这个定义之上,究竟还有什么实际意义啊数学性质啊什么的,这个我思考起来有点力不从心。
        2012-8-28 21:37回复
      • wolfking97回复 坂上中微子 :这个还真不知道。
        2012-8-29 01:11回复
      • uukoo原来最早研究这种加速的是波恩,科普了

    No comments:

    Post a Comment