Sunday, September 30, 2012
解狄拉克方程时发现了负能解。这就是说,满足相对论要求的粒子可能具有负能量,即处于“负能态”。这是不好理解也无法观察的。而且由于处于高能量状态的粒子要往低能态跃迁,粒子系统会完全落入负能态。这当然与事实不符。为了避免这种情况,狄拉克假定所有负能量状态都被填满(这只有对费米子才可能),形成所谓“电子海”,以至具有正能量的粒子都不会陷进去。 这样,电子海就扮演着一个“真空”的角色,这种“真空”不是空的,但不能被观察到。所以,从“观察效应”看,什么都没有;但只要“电子海”中的负能电子吸收了足够的能量(大于2mec2, me为电子的静止质量,c为光速),就可以使它跃迁到正能态,同时在“电子海”里留下一个与电子质量相同,但电荷相反(即带正电荷)的粒子(正电子)。起初,“正电子”好像只是狄克给他的方程遇到的负能量解这个困难作的牵强附会的解释。到1932年,安德逊果然在宇宙射线中发现了正电子。这大大开阔了人们的眼界,同时“电子海”这个物理图像也得到认真对待。按照这样的模型,所谓“真空”指的只是因为“正能态”是空的,所以“没有观察到什么”,但“负能态”却是满的,虽然本身没有可以观察到的东西,但它是可观察效应的背景,而且,由它可以产生出可以观察到的正电子和电子(称为“正负电子对“),所以这个“真空”并不空。可以说,“电子海”是量子场的一种雏形。也可以初步说明“无中生有
解狄拉克方程时发现了负能解。这就是说,满足相对论要求的粒子可能具有负能量,即处于“负能态”。这是不好理解也无法观察的。而且由于处于高能量状态的粒子要往低能态跃迁,粒子系统会完全落入负能态。这当然与事实不符。为了避免这种情况,狄拉克假定所有负能量状态都被填满(这只有对费米子才可能),形成所谓“电子海”,以至具有正能量的粒子都不会陷进去。
这样,电子海就扮演着一个“真空”的角色,这种“真空”不是空的,但不能被观察到。所以,从“观察效应”看,什么都没有;但只要“电子海”中的负能电子吸收了足够的能量(大于2mec2,
me为电子的静止质量,c为光速),就可以使它跃迁到正能态,同时在“电子海”里留下一个与电子质量相同,但电荷相反(即带正电荷)的粒子(正电子)。起初,“正电子”好像只是狄克给他的方程遇到的负能量解这个困难作的牵强附会的解释。到1932年,安德逊果然在宇宙射线中发现了正电子。这大大开阔了人们的眼界,同时“电子海”这个物理图像也得到认真对待。按照这样的模型,所谓“真空”指的只是因为“正能态”是空的,所以“没有观察到什么”,但“负能态”却是满的,虽然本身没有可以观察到的东西,但它是可观察效应的背景,而且,由它可以产生出可以观察到的正电子和电子(称为“正负电子对“),所以这个“真空”并不空。可以说,“电子海”是量子场的一种雏形。也可以初步说明“无中生有
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment