傅裏葉變換,拉普拉斯變換和Z變換的意義 [轉貼 2011-3-14 20:51:31]
傅裏葉變換在物理學、數論、組合數學、信號處理、概率論、統計學、密碼學、聲學、光學、海洋學、結構動力學等領域都有著廣泛的應用(例如在信號處理中,傅裏葉變換的典型用途是將信號分解成幅值分量和頻率分量)。 傅裏葉變換能將滿足一定條件的某個函數表示成三角函數(正弦和/或余弦函數)或者它們的積分的線性組合。在不同的研究領域,傅裏葉變換具有多種不同的變體形式,如連續傅裏葉變換和離散傅裏葉變換。
傅裏葉變換是一種解決問題的方法,一種工具,一種看待問題的角度。理解的關鍵是:一個連續的信號可以看作是一個個小信號的疊加,從時域疊加與從頻域疊加都可以組成原來的信號,將信號這麽分解後有助於處理。
我們原來對一個信號其實是從時間的角度去理解的,不知不覺中,其實是按照時間把信號進行分割,每一部分只是一個時間點對應一個信號值,一個信號是一組這樣的分量的疊加。傅裏葉變換後,其實還是個疊加問題,只不過是從頻率的角度去疊加,只不過每個小信號是一個時間域上覆蓋整個區間的信號,但他確有固定的周期,或者說,給了一個周期,我們就能畫出一個整個區間上的分信號,那麽給定一組周期值(或頻率值),我們就可以畫出其對應的曲線,就像給出時域上每一點的信號值一樣,不過如果信號是周期的話 ,頻域的更簡單,只需要幾個甚至一個就可以了,時域則需要整個時間軸上每一點都映射出一個函數值。
傅裏葉變換就是將一個信號的時域表示形式映射到一個頻域表示形式;逆傅裏葉變換恰好相反。這都是一個信號的不同表示形式。它的公式會用就可以,當然把證明看懂了更好。
對一個信號做傅裏葉變換,可以得到其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率分量的大小,那麽相位呢,它有什麽物理意義?頻域的相位與時域的相位有關系嗎?信號前一段的相位(頻域)與後一段的相位的變化是否與信號的頻率成正比關系。
傅裏葉變換就是把一個信號,分解成無數的正弦波(或者余弦波)信號。也就是說,用無數的正弦波,可以合成任何你所需要的信號。
想一想這個問題:給你很多正弦信號,你怎樣才能合成你需要的信號呢?答案是要兩個條件,一個是每個正弦波的幅度,另一個就是每個正弦波之間的相位差。所以現在應該明白了吧,頻域上的相位,就是每個正弦波之間的相位。
傅裏葉變換用於信號的頻率域分析,一般我們把電信號描述成時間域的數學模型,而數字信號處理對信號的頻率特性更感興趣,而通過傅立葉變換很容易得到信號的頻率域特性。
傅裏葉變換簡單通俗理解就是把看似雜亂無章的信號考慮成由一定振幅、相位、頻率的基本正弦(余弦)信號組合而成,傅裏葉變換的目的就是找出這些基本正弦(余弦)信號中振幅較大(能量較高)信號對應的頻率,從而找出雜亂無章的信號中的主要振動頻率特點。如減速機故障時,通過傅裏葉變換做頻譜分析,根據各級齒輪轉速、齒數與雜音頻譜中振幅大的對比,可以快速判斷哪級齒輪損傷。
拉普拉斯變換,是工程數學中常用的一種積分變換。
它是為簡化計算而建立的實變量函數和復變量函數間的一種函數變換。對一個實變量函數作拉普拉斯變換,並在復數域中作各種運算,再將運算結果作拉普拉斯反變換來求得實數域中的相應結果,往往比直接在實數域中求出同樣的結果在計算上容易得多。拉普拉斯變換的這種運算步驟對於求解線性微分方程尤為有效,它可把微分方程化為容易求解的代數方程來處理,從而使計算簡化。在經典控制理論中,對控制系統的分析和綜合,都是建立在拉普拉斯變換的基礎上的。
引入拉普拉斯變換的一個主要優點,是可采用傳遞函數代替微分方程來描述系統的特性。這就為采用直觀和簡便的圖解方法來確定控制系統的整個特性(見信號流程圖、動態結構圖)、分析控制系統的運動過程(見奈奎斯特穩定判據、根軌跡法),以及綜合控制系統的校正裝置(見控制系統校正方法)提供了可能性。
拉普拉斯變換在工程學上的應用:應用拉普拉斯變換解常變量齊次微分方程,可以將微分方程化為代數方程,使問題得以解決。在工程學上,拉普拉斯變換的重大意義在於:將一個信號從時域上,轉換為復頻域(s域)上來表示;在線性系統,控制自動化上都有廣泛的應用。
在數字信號處理中,Z變換是一種非常重要的分析工具。但在通常的應用中,我們往往只需要分析信號或系統的頻率響應,也即是說通常只需要進行傅裏葉變換即可。那麽,為什麽還要引進Z變換呢?
Z變換和傅裏葉變換之間有存在什麽樣的關系呢?傅裏葉變換的物理意義非常清晰:將通常在時域表示的信號,分解為多個正弦信號的疊加。每個正弦信號用幅度、頻率、相位就可以完全表征。傅裏葉變換之後的信號通常稱為頻譜,頻譜包括幅度譜和相位譜,分別表示幅度隨頻率的分布及相位隨頻率的分布。在自然界,頻率是有明確的物理意義的,比如說聲音信號,男同胞聲音低沈雄渾,這主要是因為男聲中低頻分量更多;女同胞多高亢清脆,這主要是因為女聲中高頻分量更多。對一個信號來說,就包含的信息量來講,時域信號及其相應的傅裏葉變換之後的信號是完全一樣的。那傅裏葉變換有什麽作用呢?因為有的信號主要在時域表現其特性,如電容充放電的過程;而有的信號則主要在頻域表現其特性,如機械的振動,人類的語音等。若信號的特征主要在頻域表示的話,則相應的時域信號看起來可能雜亂無章,但在頻域則解讀非常方便。在實際中,當我們采集到一段信號之後,在沒有任何先驗信息的情況下,直覺是試圖在時域能發現一些特征,如果在時域無所發現的話,很自然地將信號轉換到頻域再看看能有什麽特征。信號的時域描述與頻域描述,就像一枚硬幣的兩面,看起來雖然有所不同,但實際上都是同一個東西。正因為如此,在通常的信號與系統的分析過程中,我們非常關心傅裏葉變換。
既然人們只關心信號的頻域表示,那麽Z變換又是怎麽回事呢?要說到Z變換,可能還要先追溯到拉普拉斯變換。拉普拉斯變換是以法國數學家拉普拉斯命名的一種變換方法,主要是針對連續信號的分析。拉普拉斯和傅裏葉都是同時代的人,他們所處的時代在法國是處於拿破侖時代,國力鼎盛。在科學上也取代英國成為當時世界的中心,在當時眾多的科學大師中,拉普拉斯、拉格朗日、傅裏葉就是他們中間最為璀璨的三顆星。傅裏葉關於信號可以分解為正弦信號疊加的論文,其評審人即包括拉普拉斯和拉格朗日。
回到正題,傅裏葉變換雖然好用,而且物理意義明確,但有一個最大的問題是其存在的條件比較苛刻,比如時域內絕對可積的信號才可能存在傅裏葉變換。拉普拉斯變換可以說是推廣了這以概念。在自然界,指數信號exp(-x)是衰減最快的信號之一,對信號乘上指數信號之後,很容易滿足絕對可積的條件。因此將原始信號乘上指數信號之後一般都能滿足傅裏葉變換的條件,這種變換就是拉普拉斯變換。這種變換能將微分方程轉化為代數方程,在18世紀計算機還遠未發明的時候,意義非常重大。從上面的分析可以看出,傅裏葉變換可以看做是拉普拉斯的一種特殊形式,即所乘的指數信號為exp(0)。也即是說拉普拉斯變換是傅裏葉變換的推廣,是一種更普遍的表達形式。在進行信號與系統的分析過程中,可以先得到拉普拉斯變換這種更普遍的結果,然後再得到傅裏葉變換這種特殊的結果。這種由普遍到特殊的解決辦法,已經證明在連續信號與系統的分析中能夠帶來很大的方便。
Z變換可以說是針對離散信號和系統的拉普拉斯變換,由此我們就很容易理解Z變換的重要性,也很容易理解Z變換和傅裏葉變換之間的關系。Z變換中的Z平面與拉普拉斯中的S平面存在映射的關系,z=exp(Ts)。在Z變換中,單位圓上的結果即對應離散時間傅裏葉變換的結果。
傅裏葉變換是一種解決問題的方法,一種工具,一種看待問題的角度。理解的關鍵是:一個連續的信號可以看作是一個個小信號的疊加,從時域疊加與從頻域疊加都可以組成原來的信號,將信號這麽分解後有助於處理。
我們原來對一個信號其實是從時間的角度去理解的,不知不覺中,其實是按照時間把信號進行分割,每一部分只是一個時間點對應一個信號值,一個信號是一組這樣的分量的疊加。傅裏葉變換後,其實還是個疊加問題,只不過是從頻率的角度去疊加,只不過每個小信號是一個時間域上覆蓋整個區間的信號,但他確有固定的周期,或者說,給了一個周期,我們就能畫出一個整個區間上的分信號,那麽給定一組周期值(或頻率值),我們就可以畫出其對應的曲線,就像給出時域上每一點的信號值一樣,不過如果信號是周期的話 ,頻域的更簡單,只需要幾個甚至一個就可以了,時域則需要整個時間軸上每一點都映射出一個函數值。
傅裏葉變換就是將一個信號的時域表示形式映射到一個頻域表示形式;逆傅裏葉變換恰好相反。這都是一個信號的不同表示形式。它的公式會用就可以,當然把證明看懂了更好。
對一個信號做傅裏葉變換,可以得到其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率分量的大小,那麽相位呢,它有什麽物理意義?頻域的相位與時域的相位有關系嗎?信號前一段的相位(頻域)與後一段的相位的變化是否與信號的頻率成正比關系。
傅裏葉變換就是把一個信號,分解成無數的正弦波(或者余弦波)信號。也就是說,用無數的正弦波,可以合成任何你所需要的信號。
想一想這個問題:給你很多正弦信號,你怎樣才能合成你需要的信號呢?答案是要兩個條件,一個是每個正弦波的幅度,另一個就是每個正弦波之間的相位差。所以現在應該明白了吧,頻域上的相位,就是每個正弦波之間的相位。
傅裏葉變換用於信號的頻率域分析,一般我們把電信號描述成時間域的數學模型,而數字信號處理對信號的頻率特性更感興趣,而通過傅立葉變換很容易得到信號的頻率域特性。
傅裏葉變換簡單通俗理解就是把看似雜亂無章的信號考慮成由一定振幅、相位、頻率的基本正弦(余弦)信號組合而成,傅裏葉變換的目的就是找出這些基本正弦(余弦)信號中振幅較大(能量較高)信號對應的頻率,從而找出雜亂無章的信號中的主要振動頻率特點。如減速機故障時,通過傅裏葉變換做頻譜分析,根據各級齒輪轉速、齒數與雜音頻譜中振幅大的對比,可以快速判斷哪級齒輪損傷。
拉普拉斯變換,是工程數學中常用的一種積分變換。
它是為簡化計算而建立的實變量函數和復變量函數間的一種函數變換。對一個實變量函數作拉普拉斯變換,並在復數域中作各種運算,再將運算結果作拉普拉斯反變換來求得實數域中的相應結果,往往比直接在實數域中求出同樣的結果在計算上容易得多。拉普拉斯變換的這種運算步驟對於求解線性微分方程尤為有效,它可把微分方程化為容易求解的代數方程來處理,從而使計算簡化。在經典控制理論中,對控制系統的分析和綜合,都是建立在拉普拉斯變換的基礎上的。
引入拉普拉斯變換的一個主要優點,是可采用傳遞函數代替微分方程來描述系統的特性。這就為采用直觀和簡便的圖解方法來確定控制系統的整個特性(見信號流程圖、動態結構圖)、分析控制系統的運動過程(見奈奎斯特穩定判據、根軌跡法),以及綜合控制系統的校正裝置(見控制系統校正方法)提供了可能性。
拉普拉斯變換在工程學上的應用:應用拉普拉斯變換解常變量齊次微分方程,可以將微分方程化為代數方程,使問題得以解決。在工程學上,拉普拉斯變換的重大意義在於:將一個信號從時域上,轉換為復頻域(s域)上來表示;在線性系統,控制自動化上都有廣泛的應用。
在數字信號處理中,Z變換是一種非常重要的分析工具。但在通常的應用中,我們往往只需要分析信號或系統的頻率響應,也即是說通常只需要進行傅裏葉變換即可。那麽,為什麽還要引進Z變換呢?
Z變換和傅裏葉變換之間有存在什麽樣的關系呢?傅裏葉變換的物理意義非常清晰:將通常在時域表示的信號,分解為多個正弦信號的疊加。每個正弦信號用幅度、頻率、相位就可以完全表征。傅裏葉變換之後的信號通常稱為頻譜,頻譜包括幅度譜和相位譜,分別表示幅度隨頻率的分布及相位隨頻率的分布。在自然界,頻率是有明確的物理意義的,比如說聲音信號,男同胞聲音低沈雄渾,這主要是因為男聲中低頻分量更多;女同胞多高亢清脆,這主要是因為女聲中高頻分量更多。對一個信號來說,就包含的信息量來講,時域信號及其相應的傅裏葉變換之後的信號是完全一樣的。那傅裏葉變換有什麽作用呢?因為有的信號主要在時域表現其特性,如電容充放電的過程;而有的信號則主要在頻域表現其特性,如機械的振動,人類的語音等。若信號的特征主要在頻域表示的話,則相應的時域信號看起來可能雜亂無章,但在頻域則解讀非常方便。在實際中,當我們采集到一段信號之後,在沒有任何先驗信息的情況下,直覺是試圖在時域能發現一些特征,如果在時域無所發現的話,很自然地將信號轉換到頻域再看看能有什麽特征。信號的時域描述與頻域描述,就像一枚硬幣的兩面,看起來雖然有所不同,但實際上都是同一個東西。正因為如此,在通常的信號與系統的分析過程中,我們非常關心傅裏葉變換。
既然人們只關心信號的頻域表示,那麽Z變換又是怎麽回事呢?要說到Z變換,可能還要先追溯到拉普拉斯變換。拉普拉斯變換是以法國數學家拉普拉斯命名的一種變換方法,主要是針對連續信號的分析。拉普拉斯和傅裏葉都是同時代的人,他們所處的時代在法國是處於拿破侖時代,國力鼎盛。在科學上也取代英國成為當時世界的中心,在當時眾多的科學大師中,拉普拉斯、拉格朗日、傅裏葉就是他們中間最為璀璨的三顆星。傅裏葉關於信號可以分解為正弦信號疊加的論文,其評審人即包括拉普拉斯和拉格朗日。
回到正題,傅裏葉變換雖然好用,而且物理意義明確,但有一個最大的問題是其存在的條件比較苛刻,比如時域內絕對可積的信號才可能存在傅裏葉變換。拉普拉斯變換可以說是推廣了這以概念。在自然界,指數信號exp(-x)是衰減最快的信號之一,對信號乘上指數信號之後,很容易滿足絕對可積的條件。因此將原始信號乘上指數信號之後一般都能滿足傅裏葉變換的條件,這種變換就是拉普拉斯變換。這種變換能將微分方程轉化為代數方程,在18世紀計算機還遠未發明的時候,意義非常重大。從上面的分析可以看出,傅裏葉變換可以看做是拉普拉斯的一種特殊形式,即所乘的指數信號為exp(0)。也即是說拉普拉斯變換是傅裏葉變換的推廣,是一種更普遍的表達形式。在進行信號與系統的分析過程中,可以先得到拉普拉斯變換這種更普遍的結果,然後再得到傅裏葉變換這種特殊的結果。這種由普遍到特殊的解決辦法,已經證明在連續信號與系統的分析中能夠帶來很大的方便。
Z變換可以說是針對離散信號和系統的拉普拉斯變換,由此我們就很容易理解Z變換的重要性,也很容易理解Z變換和傅裏葉變換之間的關系。Z變換中的Z平面與拉普拉斯中的S平面存在映射的關系,z=exp(Ts)。在Z變換中,單位圓上的結果即對應離散時間傅裏葉變換的結果。
No comments:
Post a Comment