Wednesday, February 12, 2014

bs01 当一系统由于加给一微小的热量δQ而温度升高dT时,δQ/dT 这个量即是该系统的热容。”(

"The Greeks" measure the sensitivity of the value of a derivative or a portfolio to changes in parameter value(s) while holding the other parameters fixed. They are partial derivatives of the price with respect to the parameter values

热容_百度百科

baike.baidu.com/view/732601.htm?fromenter=heat... - 轉為繁體網頁
简介heat capacity热容的标准定义热容的标准定义是:“当一系统由于加给一微小的热量δQ而温度升高dT时,δQ/dT 这个量即是该系统的热容。”(GB3102.4-93),通常 ...
  • 能量均分定理- 维基百科,自由的百科全书

    zh.wikipedia.org/zh-hk/能量均分定理
    类似于均功定理,对于一个给定温度的系统,利用均分定理,可以計算出系統的總平均動能及勢能,從而得出系统的熱容。均分定理還能分別給出能量各個组分的平均 ...
  • 热容_互动百科

    www.baike.com/wiki/热容 轉為繁體網頁
    系统的温度升高1K所需的热称为该系统的热容(符号C,单位J/K)。 热容是一个广度量,如果升温是在体积不变条件下进行,该热容称为等容热容,如果升温是在压力不 ...
  • 熱容- 台灣Wiki

    www.twwiki.com/wiki/熱容
    2013年7月18日 - 系統的溫度升高1K所需的熱稱為該系統的熱容(符號C,單位J/K)。 熱容是一個廣度量,如果升溫是在體積不變條件下進行,該熱容稱為等容熱容, ...
  • [PDF]

    查看全文 - 生物化学与生物物理进展

    www.pibb.ac.cn/pibbcn/ch/.../create_pdf.aspx?file... 轉為繁體網頁
    如果一个系统的热容Cp(T) 在某个温度. 范围(To一T) 内是已知的话, 那么我们就不仅. 能够测定该系统在此范围内的烩参数. H(T) = H(To) 十Cp(T)绎T. 还可以测定该 ...
  • 第二十一章气体分子动理论

    phyedu.suda.edu.cn/phyol/article/chap22/22-3/22-3.htm 轉為繁體網頁
    22.3 理想气体的热容. 一. 气体的摩尔热容. 一个系统的温度升高dT时,如果它所吸收的热量为dQ,则系统的热容C定义为. 当系统的物质的量为1mol时,它的热容叫 ...
  • 上一知识点 - 新世纪网络课程-物理学

    www.wljx.sdu.edu.cn/wlwz/wangke/chpt17/.../kcnr.htm 轉為繁體網頁
    当系统的温度升高1 k时所吸收的热量,称为该系统的热容。前面我们知道,系统从一个状态变化到另一个状态所获得的或释放的热量不仅决定于初、末状态,而且与 ...
  • 大学物理学: 热学. 第二册 - 第 110 頁 - Google 圖書結果

    books.google.com.hk/books?isbn=7302034850 - 轉為繁體網頁
    1999
    热学. 第二册. 温度升高 dr 时,如果它所吸收的热量为 aQ ,则系统的热容 C 定义为 C 二兰旦( 3 · 7 ) dT 当系统的物质的量为 Imo ...
  • 热容- 搜搜百科

    baike.soso.com/v7612747.htm 轉為繁體網頁
    系统的温度升高1K所需的热称为该系统的热容(符号C,单位J/K)。 热容是一个广度量,如果升温是在体积不变条件下进行,该热容称为等容热容,如果升温是在压力不 ...
  • 化学反应平衡系统的热容计算Calculation of heat capacities for ...

    d.wanfangdata.com.cn › ... › 1999年6期 - 轉為繁體網頁
    由 朱文涛 著作 - ‎1999 - ‎被引用 1 次 - ‎相關文章
    为了方便精确地计算化学反应系统的热容,以反应进度为基础,建立了理想混合物中化学反应平衡系统的热容计算方法.利用偏摩尔量的性质和热力学基本关系式导出了 ...
  • "The Greeks" measure the sensitivity of the value of a derivative or a portfolio to changes in parameter value(s) while holding the other parameters fixed. They are partial derivatives of the price with respect to the parameter values. One Greek, "gamma" (as well as others not listed here) is a partial derivative of another Greek, "delta" in this case.
    The Greeks are important not only in the mathematical theory of finance, but also for those actively trading. Financial institutions will typically set (risk) limit values for each of the Greeks that their traders must not exceed. Delta is the most important Greek since this usually confers the largest risk. Many traders will zero their delta at the end of the day if they are not speculating and following a delta-neutral hedging approach as defined by Black–Scholes.
    The Greeks for Black–Scholes are given in closed form below. They can be obtained by differentiation of the Black–Scholes formula.[10]
    CallsPuts
    Delta{\frac  {\partial C}{\partial S}}N(d_{1})\,-N(-d_{1})=N(d_{1})-1\,
    Gamma{\frac  {\partial ^{{2}}C}{\partial S^{{2}}}}{\frac  {N'(d_{1})}{S\sigma {\sqrt  {T-t}}}}\,
    Vega{\frac  {\partial C}{\partial \sigma }}SN'(d_{1}){\sqrt  {T-t}}\,
    Theta{\frac  {\partial C}{\partial t}}-{\frac  {SN'(d_{1})\sigma }{2{\sqrt  {T-t}}}}-rKe^{{-r(T-t)}}N(d_{2})\,-{\frac  {SN'(d_{1})\sigma }{2{\sqrt  {T-t}}}}+rKe^{{-r(T-t)}}N(-d_{2})\,
    Rho{\frac  {\partial C}{\partial r}}K(T-t)e^{{-r(T-t)}}N(d_{2})\,-K(T-t)e^{{-r(T-t)}}N(-d_{2})\,
    Note that from the formulas, it is clear that the gamma is the same value for calls and puts and so too is the vega the same value for calls and put options. This can be seen directly from put–call parity, since the difference of a put and a call is a forward, which is linear in S and independent of σ (so a forward has zero gamma and zero vega).
    In practice, some sensitivities are usually quoted in scaled-down terms, to match the scale of likely changes in the parameters. For example, rho is often reported divided by 10,000 (1 basis point rate change), vega by 100 (1 vol point change), and theta by 365 or 252 (1 day decay based on either calendar days or trading days per year).
    (Vega is of course not a letter in the Greek alphabet; the name arises from reading the Greek letter ν (nu) as a V.)

    No comments:

    Post a Comment