鑰匙鏈在喇叭平台上振動的統計行為 | |
論文名稱(外文): | The Statistics and Dynamics of Chains on a Vibrating Plate |
---|---|
指導教授: | 洪在明 |
指導教授(外文): | Hong, Tzay-ming |
學位類別: | 碩士 |
校院名稱: | 國立清華大學 |
系所名稱: | 物理系 |
學號: | 933310 |
出版年: | 95 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 高分子、鑰匙鏈、熵力、統計行為 |
相關次數: |
|
鑰匙鍊在喇叭平台上的扭動情形,和高分子在溶液中的行為類似。不過由於前者在表面上是個極度非平衡的系統,是否適合沿用後者來自環境的「溫度」概念,則尚未可知。如果可以,那麼該如何從喇叭的頻率和振幅來定義溫度?異於高分子的端點距離的機率分布和溫度無關,觀察到的鑰匙鍊情況卻隨頻率和振幅改變,甚至出現扭動變緩的共振現象,又該如何解釋?最後,我們還設計了兩套探討熵力的實驗,來直接面對「溫度」定義的正當性。
由於目前使用的鑰匙鍊段數有限,加上鄰近鍊段的張角不能太大,我們在理論的分析上,融合了數值模擬和模型的建立。主要的結論包括:1)發現頻率和振幅可以間接透過鍊條跳動的最高高度影響端點距離分布,就如同高分子在垂直方向受到限制,這個邊界條件相當於全反射面,可以利用鏡像原理來分析。2)由於數位攝影機的鏡頭有限,會在距離分布的機率上,給出額外的修正權重。3)當鍊條在達到共振前後,跳動的高度會變低,端點的水平距離分布除了變窄外,峰值還會往長距離偏移。這暗示頻率和振幅多半不是簡單地透過一個類似溫度的概念進到鍊條的動態行為,並且連同後來的熵力分析,都有可能需要擔心受到共振的影響。 當高分子部分受到限制時,由於裡外亂度的不同,會感受到向外的熵力。我們在鑰匙鍊的情況,也觀察到同樣的行為。不過由於溫度的概念有所爭議,我們另外設計了一個在高分子實驗無法實現的狀況,亦即在部分區域加上軟墊,使得鍊條在碰撞時損失較多的能量,藉以模擬較低的「溫度」。由於兩邊在空間上都沒有限制,熵力主要來自於鍊條兩端感受到的不同能量,到底它和高分子的溫度定義有何差異?我們目前推測,溫度可用鍊條的平均水平動能來取代。 |
Abstract
When a chain wriggles on a plate vibrated vertically by a speaker, its behavior is similar to that of a polymer in a solution. Since the former is far from equilibrium, it is doubtful to coin the concept of a temperature, which is determined by the heat bath a polymer solution comes into contact with. Some energy scale is clearly required to describe the vigor of the chain motion. Then, how does this scale depends on the frequency and amplitude(f/A)of the speaker? In the end, two experiments on entropic force are designed and discussed to tackle the nature of this energy scale. Because our chain is of finite steps and the neighboring steps are constrained with a maximum bending angle, we use both numerical simulation and model-building in our theoretical analysis. The main conclusions are: i) By taking into account the fact that there is a maximum height a chain can jump, f/A of the speaker can affect the distribution function, p(r), of the end-to-end distance of our chain. It is equivalent to placing a totally-reflecting plate above the chain, which enables us to use the image method. ii) Since the digital video has a finite lens, discarding of the images whose end points move outside of the scope introduces a bias to the distribution function. iii) Resonances appear in most of the f/A ranges. When they occur, p(r) becomes much narrower with its peak moving toward larger r values. All the three above properties imply that the f/A of the speaker comes into the problem in a subtler way than a simple characteristic energy scale. When partial segments of a polymer are confined within two walls, it will experience an entropic force due to the different entropies. This is also observed for our chain. Since there is a dispute over the concept of temperature, we construct another experiment to clarify it. Part of the plate is covered with soft material such that more energy is lost during each collision. We simulate those segments over it as experiencing lower “temperature”. Since neither parts of the chain is confined, the entropic force comes from the different energies they experience. Is the energy of a chain the same as the thermodynamic temperature? We preliminarily expect the average energy of the chain to play such a role. |
中文摘要 …………………………………………………………………………....…...... I
英文摘要 …………………………………………………………………………………. II 誌謝 ………………………………………………………………………………….…... III 目錄 ……………………………………………………………………………………......V 圖目錄 ………………………………………………………………………………..…VIII 第一章 序論 …………………………………………………………………………….. 1 第二章 鏈條的統計行為 ……………………………………………………………..… 4 2.1 完全可彎曲之理想鏈條的簡單模型-隨機行走 …………………………………4 2.2 理想鏈條的平均端點距離之平方值和端點距離機率分布 ……………………... 4 2.3 有最大張角限制之鏈條的平均端點距離平方值 ………………………………... 6 2.3.1 二維的情況 ……………………………………………………………..…...... 6 2.3.2 三維的情況 …………………………………………………………………… 7 2.4 有最大張角限制之鏈條的端點距離機率分布 ………………………………...… 8 2.4.1 persistent length …………………………………………………………………. 8 2.4.2 moment …………………………………………………………………………. 9 2.5 鏈條在可完全反射之限制範圍的端點距離機率分布……………………………. 11 2.6攝影鏡頭的有限面積所造成的統計偏差 ………………………………………… 13 第三章 鏈條端點距離分布之理論值及實驗數據的分析和比較 …………………… 16 3.1 實驗裝置 ……………………………………………………………………….….16 3.2 喇叭的頻率及振幅、鏈條的能量、和鏈條端點距離機率分布之關係…………16 3.2.1 喇叭的頻率及振幅和鏈條能量之關係 …………………………………….. 17 3.2.2 鏈條能量影響其端點距離機率分布 ……………………………………..… 17 3.3 共振現象 ……………………………………………………………………….… 18 3.4 實驗結果分析…………………………………………………………………...… 21 第四章 熵力…………………………………………………………………………….. 27 4.1 什麼是熵力……………………………………………………………………...… 27 4.2 基本模型 …………………………………………………………………………. 28 4.2.1 當牆寬度很小的情況-熵等於零 ………………………………………….. 28 4.2.2當牆寬度稍大的情況 ………………………………………………………... 29 4.2.3 當牆寬度更大的情況-Blob模型 ………………………………………….. 32 4.2.4 不同模型的平均端點距離及熵 …………………………………………….. 34 4.3 考慮摩擦力 ………………………………………………………………………. 34 4.4另一個實驗-能量對熵力的影響 ……………………………………………..… 37 第五章 熵力的實驗結果 ……………………………………………………………… 41 5.1 實驗裝置 ……………………………………………………………………….… 41 5.2 當牆的間距相同時,改變外面之初始段數的實驗結果 ………………………. 41 5.3 當初始段數相同時,改變牆的間距之實驗結果 ………………………………. 44 第六章 延續研究 ……………………………………………………………………… 48 6.1 鏈條的共振現象 …………………………………………………………………. 48 6.2 限制範圍會影響鏈條能量 ………………………………………………………. 48 6.3 Blob模型中,非理想鏈條的影響 …………………………………………………50 6.4 未來的實驗計畫 …………………………………………………………………. 51 6.4.1 加入布朗力的影響 ………………………………………………………….. 51 6.4.2 多個鏈條的實驗 …………………………………………………………….. 51 附錄 ……………………………………………………………………………………… 52 A. Persistent length …...………………..………………………………………..…... 52 B. Moment ….…………………………………………………………………….……53 C. 一個彈跳球 ………..…………………………………………………………….. 55 D. 有一維限制的三維理想鏈條之平均端點距離 ………………………………….57 E. 二維有最大張角限制時的Mathematica模擬程式 ……………………………. .58 F. 三維有最大張角限制時的mathematica模擬程式 ………………………………59 參考資料 ………………………………………………………………………………… 61 |
1. Pierre-Gilles de Gennes,“Scaling Concepts in Polymer Physics”, Cornell University Press, Ithaca and Landon, 1979, Chapter I
2. Pierre-Gilles de Gennes,“Scaling Concepts in Polymer Physics”, Cornell University Press, Ithaca and Landon, 1979, Chapter II 3. R.A.L.Jones,“Soft Condensed Matter”, Oxford University Press, New York, 2002, Section IV.2 4. R.A.L.Jones,“Soft Condensed Matter”, Oxford University Press, New York, 2002, Section V.5 5. M.Doi and S.F.Edwards,“The Theory of Polymer Dynamics”, Oxford Science Publications, 1986, Chapter II 6. Selected Papers on Noise and Stochastic Process, New York, 1954, Section I.3 7. P. Flory,“Statistics of Chain Molecules”, Interscience Publisher, New York, 1969, Chapter VIII 8. Selected Papers on Noise and Stochastic Process, New York, 1954, Section I.2 9. 吳韋達, 許琇娟, 林心家, 曾喬毓, 洪在明,“一個有趣的凝體物理實驗”, 物理雙月刊, 廿八卷三期, 615, 2006 10. 陳昭安, 胡進錕,“彈跳球的非線性動力學”, 物理雙月刊, 二十卷六期, 648, 1998 11. S.W.P. Turner, M. Cabodi, and H.G. Craighead,“Confinement-Induced Entropic Recoil of Single DNA Molecules in a Nanofluidic Structure”, Physical Review Letters, vol. 88, 128103, 2002 12. B. Bammes and J. S. Olafsen,“Polymerlike folding of a two-dimensional granular chain in water”, Chaos, volume 14, s9, 2004 |
No comments:
Post a Comment