Quadratic Equations
An example of a Quadratic Equation:
The name Quadratic comes from "quad" meaning square, because the variable gets squared (like x2).
It is also called an "Equation of Degree 2" (because of the "2" on the x)
The Standard Form of a Quadratic Equation looks like this:It is also called an "Equation of Degree 2" (because of the "2" on the x)
|
In this one a=2, b=5 and c=3 | ||
This one is a little more tricky:
| ||
Oops! This one is not a quadratic equation, because it is missing x2 (in other words a=0, and that means it can't be quadratic) |
Hidden Quadratic Equations!
So the "Standard Form" of a Quadratic Equation is
But sometimes a quadratic equation doesn't look like that! For example:
ax2 + bx + c = 0
In disguise | → | In Standard Form | a, b and c |
---|---|---|---|
x2 = 3x -1 | Move all terms to left hand side | x2 - 3x + 1 = 0 | a=1, b=-3, c=1 |
2(w2 - 2w) = 5 | Expand (undo the brackets), and move 5 to left | 2w2 - 4w - 5 = 0 | a=2, b=-4, c=-5 |
z(z-1) = 3 | Expand, and move 3 to left | z2 - z - 3 = 0 | a=1, b=-1, c=-3 |
5 + 1/x - 1/x2 = 0 | Multiply by x2 | 5x2 + x - 1 = 0 | a=5, b=1, c=-1 |
Have a Play With ItI have a "Quadratic Equation Explorer" so you can see:
|
How To Solve It?
The "solutions" to the Quadratic Equation are where it is equal to zero. There are usually 2 solutions (as shown in the graph above).
They are also called "roots", or sometimes "zeros"
There are 3 ways to find the solutions:They are also called "roots", or sometimes "zeros"
1. You can Factor the Quadratic (find what to multiply to make the Quadratic Equation)
2. You can Complete the Square, or
3. You can use the special Quadratic Formula:
Just plug in the values of a, b and c, and do the calculations.
We will look at this method in more detail now.About the Quadratic Formula
Plus/Minus
First of all what is that plus/minus thing that looks like ± ?The ± means there are TWO answers:
Here you see why you can get two answers:
|
Discriminant
Do you see b2 - 4ac in the formula above? It is called the Discriminant, because it can "discriminate" between the possible types of answer:
I will explain about Complex solutions after you have seen how to use the formula.
Using the Quadratic Formula
Just put the values of a, b and c into the Quadratic Formula, and do the calculations.Example: Solve 5x² + 6x + 1 = 0
Coefficients are: | a = 5, b = 6, c = 1 | |
Quadratic Formula: | x = [ -b ± √(b2-4ac) ] / 2a | |
Put in a, b and c: | x = [ -6 ± √(62-4×5×1) ] / (2×5) | |
Solve: | x = [ -6 ± √(36-20) ]/10 | |
x = [ -6 ± √(16) ]/10 | ||
x = ( -6 ± 4 )/10 | ||
x = -0.2 or -1 |
Answer: x = -0.2 or x = -1
And you can see them on this graph. |
Check -0.2: | 5×(-0.2)² + 6×(-0.2) + 1 = 5×(0.04) + 6×(-0.2) + 1 = 0.2 -1.2 + 1 = 0 |
Check -1: | 5×(-1)² + 6×(-1) + 1 = 5×(1) + 6×(-1) + 1 = 5 - 6 + 1 = 0 |
Remembering The Formula
I don't know of an easy way to remember the Quadratic Formula, but a kind reader suggested singing it to "Pop Goes the Weasel":♫ | "x equals minus b | ♫ | "All around the mulberry bush | |
plus or minus the square root | The monkey chased the weasel | |||
of b-squared minus four a c | The monkey thought 'twas all in fun | |||
all over two a" | Pop! goes the weasel" |
Complex Solutions?
When the Discriminant (the value b2 - 4ac) is negative you get Complex solutions ... what does that mean?It means your answer will include Imaginary Numbers. Wow!
Example: Solve 5x² + 2x + 1 = 0
Coefficients are: | a = 5, b = 2, c = 1 | |
Note that The Discriminant is negative: | b2 - 4ac = 22 - 4×5×1 = -16 | |
Use the Quadratic Formula: | x = [ -2 ± √(-16) ] / 10 | |
The square root of -16 is 4i (i is √-1, read Imaginary Numbers to find out more) | ||
So: | x = ( -2 ± 4i )/10 |
Answer: x = -0.2 ± 0.4i
The graph does not cross the x-axis. That is why we ended up with complex numbers. |
Summary
- Quadratic Equation in Standard Form: ax2 + bx + c = 0
- Quadratic Equations can be factored
- Quadratic Formula: x = [ -b ± √(b2-4ac) ] / 2a
- When the Discriminant (b2-4ac) is:
- positive, there are 2 real solutions
- zero, there is one real solution
- negative, there are 2 complex solutions
Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10
(Hard Questions: 1 2 3 4 5 6 7 8 )
(Hard Questions: 1 2 3 4 5 6 7 8 )
No comments:
Post a Comment