Tuesday, December 29, 2015

Sean Carroll the photon, these bosons interact directly with each other, and at low energies those interactions would become very strong

Thanksgiving


This year we give thanks for an idea that is central to our modern understanding of the forces of nature: gauge symmetry. (We’ve previously given thanks for the Standard Model Lagrangian, Hubble’s Law, the Spin-Statistics Theorem, conservation of momentum, effective field theory, and the error bar.)
When you write a popular book, some of the biggest decisions you are faced with involve choosing which interesting but difficult concepts to tackle, and which to simply put aside. In The Particle at the End of the Universe, I faced this question when it came to the concept of gauge symmetries, and in particular their relationship to the forces of nature. It’s a simple relationship to summarize: the standard four “forces of nature” all arise directly from gauge symmetries. And the Higgs field is interesting because it serves to hide some of those symmetries from us. So in the end, recognizing that it’s a subtle topic and the discussion might prove unsatisfying, I bit the bullet and tried my best to explain why this kind of symmetry leads directly to what we think of as a force. Part of that involved explaining what a “connection” is in this context, which I’m not sure anyone has ever tried before in a popular book. And likely nobody ever will try again! (Corrections welcome in comments.)

Physicists and mathematicians define a “symmetry” as “a transformation we can do to a system that leaves its essential features unchanged.” A circle has a lot of symmetry, as we can rotate it around the middle by any angle, and after the rotation it remains the same circle. We can also reflect it around an axis down the middle. A square, by contrast, has some symmetry, but less — we can reflect it around the middle, or rotate by some number of 90-degree angles, but if we rotated it by an angle that wasn’t a multiple of 90 degrees we wouldn’t get the same square back. A random scribble doesn’t have any symmetry at all; anything we do to it will change its appearance.
That’s not too hard to swallow. One layer of abstraction is to leap from symmetries of a tangible physical object like a circle to something a bit more conceptual, like “the laws of physics.” But it’s a leap well worth making! The laws of physics as we experience them here on Earth are, like the circle, invariant under rotations. We can do an experiment — say, the Cavendish experiment to measure the strength of gravity between two test bodies — in some given laboratory configuration. Then we can take the entire laboratory, rotate it by a fixed angle, and do the experiment again. If you do it right, you will get the same result, up to experimental errors. (Note that the Cavendish experiment is wickedly hard, so don’t try this at home unless you’re really up to it.) Likewise for other kinds of experiments, like measuring the charge of the electron. The laws of physics are invariant under rotations: you can rotate your experiment and get the same result, just like rotating the circle leaves you with the same geometrical figure.
Now to kick it up an additional notch, imagine you have a friend located in the lab down the hall, doing the same experiment. They will get the same results that you do for the strength of gravity or charge of the electron. That’s due to another symmetry — the laws of physics are invariant under translations (changes of position). And, of course, the invariance under rotations still holds; if anyone were crazy enough to pick up both labs at once, rotate the whole building by some fixed amount, put them back down, and do the experiments again, we would once again expect the same answer.
Your intuition tells you that there’s more to it than that, and your intuition is right. We don’t have to pick up the whole building with both labs inside; we should be able to rotate the apparatus in just one of the buildings, leaving the other one unchanged, and still get the same experimental results. But notice that this isn’t a single rotation of the whole world, as in our previous examples; now we’re rotating the two experiments separately, so their orientation changes with respect to each other.
That’s a gauge symmetry: when a symmetry transformation can be separately carried out at different points in space. Gauge symmetries are sometimes called local symmetries, since we can do them independently (locally) at every point; they are to be contrasted with global symmetries, which need to be done in a uniform way all over the place. It can be confusing, because “local” sounds like it’s less than “global,” whereas really a local/gauge symmetry represents enormously more symmetry than a mere global symmetry — infinitely more, since the transformations can happen completely independently at every point.
Fair enough, and hopefully it all makes sense. Here’s the subtle point: how do you know if one laboratory has been rotated with respect to another one? How are you able to compare the orientations of laboratories at different locations?
Doesn’t sound like it’s too difficult a question; you can use some surveying equipment, or for that matter just look at the other experiment if they’re close enough together. But while doing that you are taking advantage of the structure of space itself, something so fundamental that we typically don’t even notice it’s there. In particular, we have the means for comparing locations and orientations of distant circumstances, by traveling back and forth between them or sending signals of some sort. As we travel (or signals propagate), we are able to keep track of the location and orientation of the circumstances we left behind. Pretty amazing, when you think about it.
In order to compare things that are set up at different locations, what we are implicitly relying on is a field that stretches between the locations. The mathematical name for the kind of field we need is a connection, because it helps connect what’s going on at different points. In physics it’s called a gauge field, because Hermann Weyl introduced an (unhelpful) analogy with the “gauge” measuring the distance between rails on railroad tracks.
You might think of a gauge field as a latticework of invisible lines running through the universe, keeping track of what counts as “staying parallel” and “moving on a straight line” as we travel through space. But it’s a venerable principle of quantum field theory that, once you have a field, that field can have its own dynamics — it can bend and twist through space, typically in response to other fields that it interacts with. And when your gauge field starts twisting, you feel it as a force of nature.
Think of you and your friend doing separate experiments. If you were just in different rooms in the same building, you can travel between them on a flat floor, and you aren’t feeling any forces. But if you’re doing your experiments outdoors on a rolling hillside, the ground beneath your feet pushes you back and forth as you walk over the hills. In this case, the structure of the ground itself defines a connection field, and its curvature gives rise to a force.
That’s literally a down-to-Earth example. More fundamentally, there is a connection field on spacetime itself, which tells us how to walk on straight lines (geodesics) and compare orientations at different points. And this connection can be curved, and that curvature gives rise to a force of nature, one we call “gravity.” We’ve just invented the theory of general relativity.
General relativity is based on a rather straightforward set of symmetries: the rotations and translations we’ve already mentioned, plus “boosts” relating frames of reference moving with respect to each other. (All told, the Poincaré group.) What about the other forces — electromagnetism and the strong and weak nuclear forces? Nothing nearly so tangible, I’m afraid. These are all based on “internal” symmetries — they don’t transform things within space, but rather rotate different fields into each other. For example, you may have heard that quarks come in three different colors: red, green, and blue. It doesn’t matter what color you call a particular quark; therefore, there is a symmetry in which you rotate different colors into each other. Mathematically it takes the structure of the group SU(3), and the gauge field associated with it gives rise to the strong interactions. Electromagnetism and the weak interactions follow a simple pattern. Gluons, photons, and W/Z bosons all arise from different kinds of connection fields relating the symmetry transformations at different points in space.
Electromagnetism, indeed, was the first force for which we were able to understand that it was based on a gauge symmetry. General relativity was next, but interestingly the fact that GR is based directly on spacetime symmetries rather than internal symmetries actually makes it something of a special case, so the connection (pardon the pun) wasn’t as obvious. (Although it’s right there in my GR book.) It was Yang and Mills in the 1950’s who took the bold step of suggesting that gauge theories might be at the heart of the nuclear forces as well, although similar notions had been contemplated before.
The reason why the Yang-Mills idea wasn’t tried earlier, and didn’t catch on right away, is that forces based on gauge symmetries seem at first blush to have a universal and immediately-noticeable feature: they stretch over infinitely long ranges. That is the case for both general relativity and electromagnetism, and the mathematical structure of connection fields seems to imply that is should always be true. (This is a statement I could not for the life of me think of how to justify at a hand-waving level — anyone have any ideas?) In particle-physics language, the boson particle you get by quantizing the gauge field should be massless, like the photon and the graviton. But the nuclear forces are manifestly short-range, so the idea wasn’t immediately successful.
The answer to this dilemma is a little something called … the Higgs mechanism! By introducing yet another field (the Higgs field) that has a nonzero value everywhere in space, you can give the gauge bosons a mass in a way that is completely compatible with the mathematics. It’s the triumph of that idea has been seemingly vindicated by the discovery of the Higgs boson.
Interestingly, it turns out that Yang-Mills theories don’t have to give rise to long-range forces even if the bosons do stay massless. Imagine there were no Higgs field (and also no other effect that led to spontaneous symmetry breaking), so that the W and Z bosons of the weak interactions (or their pre-symmetry-breaking precursors) remained exactly massless. Unlike the photon, these bosons interact directly with each other, and at low energies those interactions would become very strong. Sufficiently strong that weakly-interacting particles would be confined, and the weak force wouldn’t be able to stretch over long distances. This is, of course, exactly what does happen with the strong nuclear force; gluons are massless, but the strong force is confined and therefore short-range. Perhaps we’re lucky that the physics of confinement wasn’t discovered until after the Higgs mechanism, or the latter might have taken a long time to figure out.



量子相关的几个概念
Gauge

来自: Gauge 2008-02-27 01:13:36

  • Gauge

    Gauge 2008-02-27 02:15:00

    几个跟量子涨落相关的例子.

    1,电子自能过程中发生的散射: 电子可以自发的先发出一个光子, 然后光子可以在真空中运行非常非常短暂一段时间后就被同一个电子再吸收回去. 发出和吸收两个过程都满足能量动量守恒. 这个电子“自己跟自己的相互作用”被成为 电子自能.
    如果当这个电子发出一个光子后还没来得及吸收它, 刚好就被一个发射过来的光子散射到了,电子只好先吸收了这个光子, 而之前发出的那个光子就可能变成自由光子被实验观测到了.

    值得注意的是, 根据能量涨落和时间间隔之间的不确定关系,电子发出的光子能量越大, 这个光子可以在真空中存在的时间越短, 必须很快被这个电子重新吸收回去. 电子在越短暂的时间间隔中刚巧被外面的光子散射的概率越小. 所以这种现象在实验中很难被观测到,但不是不能被观测, 事实上已经被观测到了.



    2, 真空极化过程:光子在真空中可以变成一对正负电子,在非常短暂的间隔内, 这对正负电子再湮灭成光子. 中间还是能、动量守恒的过程.
    如果在光子刚变成一对正负电子时, 其中的正电子遇到一个飞来的电子,然后跟它湮灭了,发出一个光子,或多个光子. 最后实验中就能看到一个刚才光子变的电子对中的那个电子,和一个或多个光子.



    3,还有真空涨落...真空中同时出现一对正负电子和一个光子然后他们三个很快又一起湮灭.



    4,光子跟光子也可以相互作用,只不过散射振幅更小.发生的概率更小.

    上述几个由于量子涨落而出现的过程,可以用Feynman diagram 画出来. 这正是Feynman 获得诺贝尔奖的贡献--quantum eletrodynamics(QED)可以精确计算的量子过程.
  • Gauge

    Gauge 2008-02-27 02:29:13

    说到 量子涨落 是由于这个贴子:http://www.douban.co​m/group/topic/268952​0/
      
      
    把我在那边说改了改,整理如下:(基本是解释 独立并等价于薛定谔的波函数诠释和海森堡的矩阵诠释的量子理论第三种诠释---路径积分诠释,偶像feynman 的重大物理贡献)
      
    物质具有波动性这没错.
    “她还开玩笑说物质其实也是一种波,你现在在这里走是概率波的结果,说不准你也有很小很小一部分正在别的地方和SG在一起呢~”
    这句也靠谱,根据量子理论的路径积分诠释,任何粒子都会以相同的概率同时走所有可能的路径,强调一下是 相同的概率,走所有可能的路径!
        
    而每条不同的路径被赋予不同的“权重因子”,这个权重因子跟粒子如果走这条路径的作用量有关,事实上权重因子是 exp[-iS/h bar] ,S是作用量. 这个权重因子 叫 fluctuation factor 代表量子涨落。
    粒子等概率的走每条可能的路径的概率乘以那个权重因子就是 概率振幅. 这是一个希尔伯特空间中的态矢量.
      
    再把这些所有可能的路径加权求和. 其实就是对路径进行泛函积分.这个积分在量子理论中就是路径积分. (是 Feynman的贡献,路径积分诠释是独立并等价于薛定谔的波函数诠释和海森堡的矩阵诠释的量子理论第三种诠释)
        
    对于 宏观物体的运动 就是经典路径. 宏观物体太大了,量子涨落基本上都互相抵消了. 路径积分中还有这样的结论,对于远离经典路径的那些可能的路径相抵消的最厉害. 对于那些路径,一个微小变化,就是路径的小变分,会造成巨大的加权因子的变化,(是相位的变化),这些变化会很干净的被抵消掉.
       
    用这种诠释,可以很容易在量子层次上解释经典行为,比如光的直线传播和反射 折射,还有物体的抛体运动。。。。
      
    我们看到的抛体运动之所以只被看见走了抛物线,而没看见它围绕太阳两圈后再回来,就是因为,围绕太阳两圈和两圈零一米的这两种路径 是远离经典路径---抛物线的,物体走这两种路径的 fluctuation factor 互相抵消的很干净, 以至于最后把所有可能的路径的概率振幅都加起来后,它们的影响都消失了. 所以我们没看到 那些奇怪的不合理的路径。
        
    而物体真的走过那些奇怪的不合理的路径么? 答案是肯定的。在衍射光栅 这个简单的实验中就能证明,光不但走了 符合 入射角等于反射角的路径,还走了那些看起来很奇怪很不合理的路径.
  • Gauge

    Gauge 2008-02-27 02:30:09

    厚厚 Steve 快来抢沙发... 这次我不改了.
  • [已注销] 2008-02-27 02:30:22


  • Gauge

    Gauge 2008-02-27 02:35:26

    哈哈~ :)

    最后一段为下一篇做了个铺垫.
    下篇写 光的费马原理.
  • [已注销] 2008-02-27 02:36:44

    这些量子理论我就觉得超级合理 为啥有人不能接受。。。
  • Gauge

    Gauge 2008-02-27 02:42:46

    我自己觉得用概率振幅来解释量子中的绝大部分现象都非常直观,合理。

    到是以前用 波粒二象形 一会波 一会粒子的到是比较容易让人迷糊.
    好多科普书在那纠缠 波啊 粒子啊 ... 解释起来不容易了.
  • Gauge

    Gauge 2008-02-27 02:48:17

    Steve 晚安~~ 哈哈 咱俩 夜猫子...
  • [已注销] 2008-02-27 15:25:10

    夸克涅?
    量子如何觀測? 好想看,hoho
  • Gauge

    Gauge 2008-02-27 15:59:11

    夸克是通过传递胶子--Gluon 来相互作用的. 胶子传递的就是像胶水(glue)一样能把夸克胶合在成质子中子的强相互作用. 胶子也因此得名

    量子怎么观测, 这个就没有很直观的办法了。大多数粒子都是在加速器中对撞过程上出现的,而夸克至今没有在加速器上被单独发现.只有间接证据证明夸克和胶子的存在. :)

    不过,有电子扫描隧道显微镜,可以看到一些原子组成的图案,甚至可以用探针去移动 原子呢

    找了半天都没找到那个图- 移动原子形成一个圆圈,可以很清晰看到原子之间干涉图案

    看看这个凑合一下吧

    http://greensunlight2000.blog.hexun.com/17196762_d.html
  • [已注销] 2008-02-27 16:09:35

    好漂亮! 超喜歡藝術感強的量子世界
    可惜我們無法縮小進去參觀 ^_^
  • Gauge

    Gauge 2008-02-27 16:13:25

    http://www.instrument.com.cn/bbs/images/upfile/20071213135248.jpg

    终于找到了,48个铁原子围成椭圆. 形成的电子驻波图案 :)
  • [已注销] 2008-02-27 16:13:34

    把你缩小以后就不让你变回来了 哈哈哈
  • [已注销] 2008-02-27 16:14:09

    真好看
  • [已注销] 2008-02-27 16:16:52

    終于想起來! 這個如此耳熟的名字在哪裏見過了
    G取的這個名字:The Lord is my light
    是牛津某個圖書館裏
  • [已注销] 2008-02-27 16:19:04

    你们都是文化人。。 我横看竖看都看不懂。。
  • [已注销] 2008-02-27 16:21:58

    今天剛買個250G的硬盤,正在瘋狂COPY資料ING~~~
  • Gauge

    Gauge 2008-02-27 16:22:10

    变到那个尺度的量级, 量子效应就会非常明显啦,H 你就在一个地方待不住了...开始飘飘乎乎... 从此有了高度的不不确定性啦. :)
    你身边开始不断冒出很多“泡泡”.像一团烟雾把你团团围住. 这就是 你身边的真空涨落出的大量 光子和正负电子对. 大家都看不清被“光子云雾”笼罩的你,
    而更要命的是。。。 你随时都有被真空中涨落出来的反物质湮灭掉的危险... 一束强光... H 消失了... 随之出现的 H' ... 一会H’ 也消失了. 诞生了 H’’ ... 生生不息... 因果律在你身上都不起作用了...

    <H 量子世界奇遇记> 的大纲 我都给你写好了... :)
  • [已注销] 2008-02-27 16:22:46

    我決定開始收藏各種物理學的藝術感炤片
  • [已注销] 2008-02-27 16:23:41

    同样是由基本粒子构成 为什么分化出了“生命体”和“非生命体”呢

    我也要买硬盘了 原来那个坏了。。。
  • [已注销] 2008-02-27 16:24:02

    2008-02-27 16:22:10 Gauge   变到那个尺度的量级, 量子效应就会非常明显啦,H 你就在一个地方待不住了...开始飘飘乎乎... 从此有了高度的不不确定性啦. :)
      你身边开始不断冒出很多“泡泡”.像一团烟雾把你团团围住. 这就是 你身边的真空涨落出的大量 光子和正负电子对. 大家都看不清被“光子云雾”笼罩的你,
      而更要命的是。。。 你随时都有被真空中涨落出来的反物质湮灭掉的危险... 一束强光... H 消失了... 随之出现的 H' ... 一会H’ 也消失了. 诞生了 H’’ ... 生生不息... 因果律在你身上都不起作用了...
      
      <H 量子世界奇遇记> 的大纲 我都给你写好了... :)
    ==============
    oh yeap! 太酷了!
    意識和記憶能保存下來咩?
  • Gauge

    Gauge 2008-02-27 16:24:54

    没错 就是 the Lord is my light
    我觉得这是非常浪漫的一句话... :)
  • Gauge

    Gauge 2008-02-27 16:27:52

    从无机物到有机物 到原始生命形式... 这很难说不是个偶然... 厚厚
  • [已注销] 2008-02-27 16:28:26

    G,這句話是中世紀科學啓蒙運動的時候講的么?
  • [已注销] 2008-02-27 16:29:21

    其实我比较好奇的是 生命体到底可以小到什么尺度
  • Gauge

    Gauge 2008-02-27 16:33:43

    意识 和 记忆 就跟信息能否守恒有关啦~
    比如,一个人掉进 黑洞里了,人被黑洞强引力打碎成基本粒子... 因为黑洞只有三个自由度,质量 电荷 自旋, 任何其他信息都没有。而人脑中的记忆这些信息随着进入黑洞难度就消失了吗... 这样信息就不守恒了. 如果没消失,去哪里了呢,我们怎么找回那些信息呢,这都是现在有还没研究出来的结果。 H 你一下就问到了理论物理中的最新进展呢... 有人认为信息是守恒的,但是具体机制还没搞清,大家都存疑中. :)
  • Gauge

    Gauge 2008-02-27 16:39:15

    忘了说,信息 是用 熵来定义的. 熵是描述系统的 无序,混乱程度的. 而信息 则是某种有规律的“东西”. 比如 程序 是用二进制 01序列表示的. 这个具有特定顺序的 01序列 显然是有某种规律的,不是混乱无序的,
    所以,信息可以用熵的大小来衡量.

    黑洞是有熵的. 这样把信息问题跟黑洞联系起来 就显得很自然了吧 :)
  • Gauge

    Gauge 2008-02-27 16:43:52

    H , 这句话的来源 我也不是很清楚咧.... 只知道出自牛津... :)

    Steve ... 病毒算不算最小的生命体呢... 我曾想过把 DNA组成一些结构--比如金字塔型,就利用他们之间特定角度的特定氢键相互作用,没准就能实现某种生命功能. 哈哈 瞎想
  • 白马狗熊

    白马狗熊 (江畔何人初见月,江月何年初照人) 2008-02-27 23:55:07

    我觉得Gauge写的比那些科普读物容易懂
  • Zou

    Zou 2008-03-07 00:39:31

    Gauge,你研究“两个粒子相撞产生第三个粒子的几率”吗?。。
  • Gauge

    Gauge 2008-03-07 00:51:02

    嗯. 在粒子物理里这是很常见的问题... :)

    邹的先生是研究什么领域的呢 ^_^
  • 王拾闲

    王拾闲 2008-03-07 00:54:35

    明天再看。。。我大学上“原子物理”课,在第一排睡了一学期。。。。
  • Zou

    Zou 2008-03-07 00:54:57

    er。。“近代物理”,原子核与粒子物理,偏理论的,以前整天看他设计程序算来算去。。我也搞不懂
  • Gauge

    Gauge 2008-03-07 01:08:33

    哈 我也是学理论的. 俺是他的小学弟了. 邹一定要把你先生请来哦~~~ :)
  • Shudoku

    Shudoku (mens sana in corpore sano) 2010-08-09 17:07:06

    Gauge学长,你的文章写得很形象,对我这个俗人对于量子力学的理解很有帮助。有几个地方我没有完全弄懂,可能也是因为我对中文物理术语不太熟悉(我的问题因此也提得不是很专业):

    1-《如果在光子刚变成一对正负电子时, 其中的正电子遇到一个飞来的电子,然后跟它湮灭了,发出一个光子,或多个光子》——一粒光子分解成正负电子,以及它们的重新合并需要供给能源吗?为什么重新组合的正负电子有可能成为多个光子?

    2-《S是作用量》 S 就是Boltzmann意义上的Entropy吗?(就是你说的熵?)
  • Shudoku

    Shudoku (mens sana in corpore sano) 2010-08-09 17:12:25

    3 - 《粒子等概率的走每条可能的路径的概率乘以那个权重因子就是 概率振幅. 这是一个希尔伯特空间中的态矢量》现实世界中(不是数学定义),希尔伯特空间到底需要满足什么条件?(真空?)
  • Gauge

    Gauge 2010-08-09 20:01:57

    第一个问题是这样的,光子可以自发的变成一对正负电子,你知道还有个 关于能量和时间之间的 uncertainty principle 吧, delta E * delta t > h,
    这个关系告诉我们,我们可以向真空“借 ”来能量 delta E,但是要在 delta t 时间内把能量还回去。借来的能量 E=mc^2 就可以以正负电子对的形式存在,正负电子对在delta t时间内湮灭就是把借来的能量还给真空,湮灭产生的能量以光子的形式存在.
    多光子的原因是,从别处飞来跟原有正负电子对里的正电子湮灭的那个电子有可能带有比原来的正负电子对中的电子能量大. 湮灭时多余出来的能量也要以光子的形式存在,就有可能比以前的光子数多了.
  • Gauge

    Gauge 2010-08-09 20:18:33

    2-《S是作用量》 S 就是Boltzmann意义上的Entropy吗?(就是你说的熵?)

    --
    不是entropy, 作用量 的英文是action.
    action is a integral of Lagrangian over time,

    你听说过 least action principle 吧~ 是那个action
    如果没有,可以参考一下 wiki 词条
    http://en.wikipedia.org/wiki/Least_Action_Principle

    这个物理量非常重要. 量子力学的 三种诠释,Schrodinger equation , Heisenberg's matrix mechanics and Feynman's Path integral, 中的path integral 就是一个关于action 的integral equation.
    你以后如果学 quantum field theory ,会发现path integral quantization 里更重要的意义.
  • Gauge

    Gauge 2010-08-09 20:36:36

    3 - 《粒子等概率的走每条可能的路径的概率乘以那个权重因子就是 概率振幅. 这是一个希尔伯特空间中的态矢量》现实世界中(不是数学定义),希尔伯特空间到底需要满足什么条件?(真空?)


    ----------
    这个不是我们的 Euclidean space. 这是个抽象的函数空间.
    Hilbert space is a infinite dimensional function space, it is a abstract vector space which requires the structure of inner product and need to be complete.

    你以后继续学quantum mechanics 时会学到一些Hilbert space. 不要担心, 虽然是个很抽象的数学概念,在一门叫 functional analysis 的数学课里会学到,慢慢接触就学会了. :)
  • Gauge

    Gauge 2010-08-09 20:44:56

    不知道我说明白了没有..

    这里很多概念会在你读研究生的时候学习到,现在先有个印象,以后慢慢就学到了~ :)

    对了 你学的是法语教材么...那些概念对应的法语我也不知道... 你先看着英语凑合一下吧... 看中文的术语确实是难为你了...
  • Shudoku

    Shudoku (mens sana in corpore sano) 2010-08-10 12:30:08

    谢谢学长耐心解答!说的很明白!

    我回去一定要好好读研,不能像本科那么游手好闲了

    那个delta E * delta t > h,我们目前是以delta x * delta p > (h bar/2) 来表达的,应该是一回事儿吧?

    Action我们还没有具体讲过,那从数学角度讲S也是一个Hamitonian矩阵吗?
  • Gauge

    Gauge 2010-08-10 21:12:05

    嗯 是的,uncertainty principle 有好几个不同但是等效的表述~

    S 其实是跟 Lagrangian 相关的,它跟 Hamiltonian 也是两套虽然不同但是等价的理论.不管是在经典力学还是量子力学甚至在量子场论里都有基于这两套理论的表述.
    有的时候其中一种方法好用,也有时另一种更方便. :)

    S 是跟Lagrangian 联系起来,经典力学里的运动方程是 Lagrange's equation of motion,Path integral 是一个关于这个 S的 无穷维的functional integral, 跟 Schrodinger equation 那套量子化的方法不同的是, Feynman 用path integral 去量子化粒子,而在更一般的理论---quantum field theory 里把各种各样的field,比如电磁场 ,Fermi field , Bose field ,量子化的是 path integral quantization 这种方法。

    关于Hamiltonian 的方程是 canonical equations of Hamilton, 这一套在量子力学和quantum field theory 里就是用 commutative bracket 去分别量子化粒子和fields的.

No comments:

Post a Comment