Sunday, September 9, 2012

高斯磁定律表明,磁单极子实际上并不存在于宇宙。所以,没有磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个螺线矢量场

高斯定律描述电场是怎样由电荷生成。电场线开始于正电荷,终止于负电荷。计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。

高斯磁定律表明,磁单极子实际上并不存在于宇宙。所以,没有磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个螺线矢量场。
 
 

麦克斯韦方程

麦克斯韦方程组 麦克斯韦方程组
麦克斯韦方程是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。麦克斯韦方程由描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律等四个方程组成。
编辑摘要
目录
1 简介
2 来源
3 应用
4 历史
5 麦克斯韦简介

麦克斯韦方程 - 简介

Maxwell’s equationsMaxwell’s equations
麦克斯韦方程是由物理学家麦克斯韦提出的用于解决电磁现象的方程组。它由四个方程组成:
高斯定律描述电场是怎样由电荷生成。电场线开始于正电荷,终止于负电荷。计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。
高斯磁定律表明,磁单极子实际上并不存在于宇宙。所以,没有磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个螺线矢量场。
法拉第感应定律描述含时磁场怎样生成(感应出)电场。电磁感应在这方面是许多发电机的运作原理。例如,一块旋转的条形磁铁会产生含时磁场,这又接下来会生成电场,使得邻近的闭循环因而感应出电流。
麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(原本的安培定律),另一种是靠含时电场(麦克斯韦修正项)。在电磁学里,麦克斯韦修正项意味着含时电场可以生成磁场,而由于法拉第感应定律,含时磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间(更详尽细节,请参阅条目电磁波方程)。
麦克斯韦方程是电磁学的最基本方程,奠定了电磁理论的基础。[1][2]

麦克斯韦方程 - 来源

麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。他在1873年尝试用四元数来表达,但未成功。现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
马克斯威尔位移电流马克斯威尔位移电流
麦克斯韦方程组并不是由麦克斯韦本人发现的,而是他在前人总结关于电磁现象基本规律的基础上提出的。奥斯特、安培等人提出了电场产生磁场的理论,而法拉第则提出了磁场产生电场的法拉第电磁感应定律。在这些理论的基础上,麦克斯韦又提出了“位移电流”假说。在此基础上,提出了麦克斯韦方程组,至此电和磁达到了完全的统一,形成了全新的电磁场理论。电磁领域的辉煌时代就此开启。这个方程组所要说明的问题可以简单的概括为两句话:“变化的磁场产生电场(法拉第电磁感应定律)”、“变化的电场产生磁场(位移电流假说)”。

麦克斯韦方程 - 应用

麦克斯韦利用这四个方程计算出了电磁波的传播速度,并发现电磁波的速度与光速相同。于是他预言光的本质是电磁波,后由赫兹由实验证明这一语言的正确性。[3]
提到这个方程组,大多数人可能感到陌生。可是它所产生的巨大影响,相信大家是有目共睹的。比如无线电通信、手机等。理论物理中的电动力学就是利用这组方程进行理论研究的。
从麦克斯韦方程组,可以推论出光波是电磁波。麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。从这些基础方程的相关理论,发展出现代的电力科技与电子科技。

麦克斯韦方程 - 历史

虽然有些历史学家认为麦克斯韦并不是现代麦克斯韦方程组的原创者,在建立分子涡流模型的同时,麦克斯韦的确独自地推导出所有相关的方程。现代麦克斯韦方程组的四个方程,都可以在麦克斯韦的1861年论文《论物理力线》、1865年论文《电磁场的动力学理论》和于1873年发行的名著《电磁通论》的第二册,第四集,第九章"电磁场的一般方程"里,找到可辨认的形式,尽管没有任何矢量标记和梯度符号的蛛丝马迹。这本往后物理学生必读的教科书它的发行日期,早于赫维赛德、海因里希·赫兹等等的著作。

麦克斯韦方程 - 麦克斯韦简介

James Clerk Maxwell 公元1831~公元1879
詹姆斯·克拉克·麦克斯韦是伟大的英国物理学家,经典电磁理论的创始人。1831年生于苏格兰爱丁堡。他的智力发育格外早,年仅十五岁时,就向爱丁堡皇家学院递交了一份科研论文。他就读于爱丁堡大学,毕业于剑桥大学。他成年时期的大部分时光是在大学里当教授,最后是在剑桥大学任教。他结过婚,但没有孩子。
一般认为麦克斯韦是从牛顿到爱因斯坦这一整个阶段中最伟大的理论物理学家。1879年他在48岁时因病与世长辞。他光辉的生涯就这样过早地结束了。
麦克斯韦生前没有享受到他应得的荣誉,因为他的科学思想和科学方法的重要意义直到20世纪科学革命来临时才充分体现出来。然而他没能看到科学革命的发生。1879年11月5日,麦克斯韦因病在剑桥逝世,年仅48岁。[4]

麦克斯韦方程 - 弯曲时空中

扩展

物理学中,弯曲时空中的麦克斯韦方程组制约着弯曲时空(其间的度规可能不是闵可夫斯基性的)中的电磁场的动力学。它们可以被认为是真空中的麦克斯韦方程组在广义相对论框架中的扩展,而真空中的麦克斯韦方程组只是一般化的麦克斯韦方程组在局部平直时空中的特殊形式。但由于在广义相对论中电磁场本身的存在也会引起时空的弯曲,因此真空中的麦克斯韦方程组应被理解为一种出于方便的近似形式。

微观

这种形式的麦克斯韦方程组仅仅对真空情形下的麦克斯韦方程组有用,这也被称作“微观”麦克斯韦方程组。对于宏观上与各向异性的物质相关的麦克斯韦方程组,物质的存在会建立一个参考系从而使方程组不再是协变的。

几何描述都是一样的

电磁场本身要求其几何描述与坐标选取无关,而麦克斯韦方程组在任何时空中的几何描述都是一样的,而不管这个时空是否是平直的。同时,当使用非笛卡尔的局部坐标时平直闵可夫斯基空间中的方程组会做同样的修改。例如本条目中方程组可以写成球坐标中的麦克斯韦方程组的形式。基于上述原因,更好的理解方法是将闵可夫斯基空间中的麦克斯韦方程组理解为一种特殊形式,而非将弯曲时空中的麦克斯韦方程组理解为一种相对论化的推广

No comments:

Post a Comment