不做积分时,
泛函导数与偏导数的差别是前者多出一个 delta function 因子, 这是因为 "同一点才有值".
The functional derivative is a generalization of the usual derivative that arises in the calculus of variations. In a functional derivative, instead of differentiating a function with respect to a variable, one differentiates a functional with respect to a function. The definition for the univariate case is
For example, the Euler-Lagrange differential equation is the result of functional differentiation of the Hamiltonian action (functional).
http://spe.sysu.edu.cn/spe/electrodynamics/web/pdf/ext/action.pdf
求能动张量与作用量之间的关系的物理意义
Functional Derivative
The functional derivative is a generalization of the usual derivative that arises in the calculus of variations. In a functional derivative, instead of differentiating a function with respect to a variable, one differentiates a functional with respect to a function. The definition for the univariate case is
For example, the Euler-Lagrange differential equation is the result of functional differentiation of the Hamiltonian action (functional).
The functional derivative is a generalization of the usual derivative that arises in the calculus of variations. In a functional derivative, instead of differentiating a function with respect to a variable, one differentiates a functional with respect to a function. The definition for the univariate case is
For example, the Euler-Lagrange differential equation is the result of functional differentiation of the Hamiltonian action (functional).
首先物质能动张量的原始定义依赖于时空symmetry.平移or转动。
而等效原理告诉我们引力质量和惯性质量相等。对于某共动观者那么T^(00)这个有平移对应的惯性质量,可以看成引力质量(即几何质量)与g^(00)耦合在一起。一般情况下,即g_ab和T^ab耦合。因此,我们可以变分g_ab给出另一种定义。
而等效原理告诉我们引力质量和惯性质量相等。对于某共动观者那么T^(00)这个有平移对应的惯性质量,可以看成引力质量(即几何质量)与g^(00)耦合在一起。一般情况下,即g_ab和T^ab耦合。因此,我们可以变分g_ab给出另一种定义。
我没记错的话似乎应该是这个表达式,看起来和一楼的不太一样。我没尝试这两个式子是不是等价的,LZ可以试试看
T^μν = (2/√(-g)) {δ[L_m * √(-g)]/δ[g_μν]}
这个式子导出只需对Hilbert作用量作变分即可
T^μν = (2/√(-g)) {δ[L_m * √(-g)]/δ[g_μν]}
这个式子导出只需对Hilbert作用量作变分即可
@剑圣柏杨
@台湾PiPi 老师在6楼给出的泛函的导数的定义是比较抽象的,一时半回是难以把握它的操作规律的。而下面这个定义则比较直观。从下面的定义看,1楼给出的似乎和你在13楼给出的又不是那么的等价(有点乱了,你再回忆一下你给出的式子是否是真的没有记错?)。
@台湾PiPi 老师在6楼给出的泛函的导数的定义是比较抽象的,一时半回是难以把握它的操作规律的。而下面这个定义则比较直观。从下面的定义看,1楼给出的似乎和你在13楼给出的又不是那么的等价(有点乱了,你再回忆一下你给出的式子是否是真的没有记错?)。
No comments:
Post a Comment