球壳内部的均匀力场
Effect on physics[edit]
Configurations of classical charged particles orbiting one another are unstable due to losses of energy by electromagnetic radiation. Even without those losses, Earnshaw’s theorem means that dynamic systems of charges are unstable over long periods[dubious ]. For quite some time, this led to the puzzling question of why matter stays together as much evidence was found that matter was held together electromagnetically, but static configurations would be unstable, and electrodynamic configurations would be expected to radiate energy and decay.These questions eventually pointed the way to quantum mechanical explanations of the structure of the atom, and it turns out that the Pauli exclusion principle and the existence of discrete electron orbitals is responsible for making bulk matter rigid.
北京彼奥德电子技术有限公司
发表了博文 《什么是化学吸附?化学吸附的具体应用》 -
吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附。由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能 http://t.cn/zOmUNHK
作者:苏剑林 | 发布时间:October 16, 2010
也许不少同好已经在一些书籍上看到过这样的论述:
如图,我们要证明A点所受到的引力之和为0。过A点可以作两个立体角很小的对顶的圆锥,化成平面图就是图中“ΔABC和ΔADE”或“ΔAGF和ΔAHI”。以前者为例,当对顶角很小时,我们可以把DE和BC部分都其视为质点处理,并且将DE和BC看成直线(注意,它们本不是一条线,而是一个凸起的圆;看成直线后他们就是一个平面上的圆)。分别计算它们对A点的引力
FABC=GMBCMAAB2
FADE=GMDEMAAD2
由于密度均匀
MBCMDE=SBCSDE=AB2AD2代入后,我们发现
F_{ABC}=F_{ADE}$
也就是说,这两个部分的引力抵消了。一个球壳可以做无限次这种分割,而它们的引力都相互抵消,换句话说球壳的每个点对A的引力都会有另外一个点与之抵消,于是A点所受的引力为0。
由于静电力场具有和万有引力场类似的性质(和距离平方成反比),因而不难类比到,当球壳上均匀布满同种电荷时,球壳内任意点电荷所受的静电力合力为零。这时,我们不禁产生一个疑问:电荷有正负之分,要是球壳被平均分成两半,各自都均匀地分布着等量的异种电荷,那么内部的电场是怎样的呢?
也许有朋友猜测也是匀强的,不过这样想的朋友错了。请看下图
蓝色弧和红色弧分别代表带等量的异种电荷,分析点A的受力情况,根据上面的推导方法,由于BC与DE两段弧(实际是两个凸圆)的静电力相互抵消,红色弧与BD弧的静电力相等,而且方向相同,因此可以看成:A点的受力等于半球壳CE(红色弧)对A点的合力的两倍。要是受力均匀,那就是说半球壳CE对任意点的静电力相等,这显然不符合事实。
转载请包括本文地址:http://spaces.ac.cn/index.php/archives/988/
各向同性的薄球壳,其内部任意一点所受到来自球壳的引力为0。这是一个很神奇的事情,因为这意味着这是一个均匀引力场,虽然我们在很多问题上都假设了引力场均匀,但是我们却很难知道如何构造一个真正的均匀引力场(而构造一个真正的均匀力场都分析某些问题是很有用的,例如推导一些比例系数),现在眼前就摆着一个均匀引力场了。并且利用它我们就可以计算均匀实心球内部一点所受到的引力(等于它与一个球体的引力)。而关于它的证明,当然也可以利用微积分的知识,可是我们在这里介绍一个初等的方法,相信它会使我们更加感受到物理的神奇和有趣。
如图,我们要证明A点所受到的引力之和为0。过A点可以作两个立体角很小的对顶的圆锥,化成平面图就是图中“ΔABC和ΔADE”或“ΔAGF和ΔAHI”。以前者为例,当对顶角很小时,我们可以把DE和BC部分都其视为质点处理,并且将DE和BC看成直线(注意,它们本不是一条线,而是一个凸起的圆;看成直线后他们就是一个平面上的圆)。分别计算它们对A点的引力
由于密度均匀
也就是说,这两个部分的引力抵消了。一个球壳可以做无限次这种分割,而它们的引力都相互抵消,换句话说球壳的每个点对A的引力都会有另外一个点与之抵消,于是A点所受的引力为0。
由于静电力场具有和万有引力场类似的性质(和距离平方成反比),因而不难类比到,当球壳上均匀布满同种电荷时,球壳内任意点电荷所受的静电力合力为零。这时,我们不禁产生一个疑问:电荷有正负之分,要是球壳被平均分成两半,各自都均匀地分布着等量的异种电荷,那么内部的电场是怎样的呢?
也许有朋友猜测也是匀强的,不过这样想的朋友错了。请看下图
蓝色弧和红色弧分别代表带等量的异种电荷,分析点A的受力情况,根据上面的推导方法,由于BC与DE两段弧(实际是两个凸圆)的静电力相互抵消,红色弧与BD弧的静电力相等,而且方向相同,因此可以看成:A点的受力等于半球壳CE(红色弧)对A点的合力的两倍。要是受力均匀,那就是说半球壳CE对任意点的静电力相等,这显然不符合事实。
转载请包括本文地址:http://spaces.ac.cn/index.php/archives/988/
No comments:
Post a Comment