Monday, November 24, 2014

閉迴路導引系統形成波函數 之複數狀態空間動態,而量子算符便自然地從中而生

量子力學中的隨機最佳導引律
論文名稱(英文)The Stochastic Optimal Guidance Law in Quantum Mechanics
校院名稱成功大學
系所名稱(中)航空太空工程學系
系所名稱(英)Department of Aeronautics & Astronautics
學年度102
學期1
出版年102
研究生(中文)鄭烈烈
研究生(英文)Lieh-Lieh Cheng
學號P48951044
學位類別博士
語文別英文
論文頁數102頁
口試委員指導教授-楊憲東
口試委員-張書銓
口試委員-王大中
口試委員-李君謨
口試委員-孔健君
口試委員-黃榮興
中文關鍵字隨機控制  最佳導引  量子軌跡  前導波 
英文關鍵字Stochastic Control  Optimal Guidance  Quantum Trajectory  Pilot Wave 
學科別分類
中文摘要 延續德布洛伊導引波的概念,本論文將量子力學視為隨機最佳導引律的問題。在量子世界當中,吾人可將電子看做一架被導引的飛行器,而伴隨其身的導引波正是在追隨由維納程序所驅動的隨機標靶時並且同時在最小化剩餘成本函數考量之下,所設計出來的導引律。在藉由動態規劃法求解隨機最佳導引問題之後,吾人指出導引粒子運動的最佳導引波,其實就是薛丁格方程式的解:波函數 。同時間,吾人發現閉迴路導引系統形成波函數 之複數狀態空間動態,而量子算符便自然地從中而生。文章末吾人將求解在最佳導引律作用之下的量子軌跡,並顯示其在實數空間中的統計分佈與機率密度函數 的預測一致。
英文摘要Following the de Broglie’s idea of pilot wave, this dissertation treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction , a solution to Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state-space dynamics for , from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function .
論文目次 摘要……….… II
ABSTRACT.... III
CHINESE ABSTRACT OF EACH CHAPTER IV
誌謝……….… XIII
CONTENTS……...…………………………………………… ………….XV
LIST OF FIGURES XVII
NOMENCLATURE XXI
CHAPTER 1 INTRODUCTION 1
1.1 INCEPTION OF PILOT WAVE 1
1.2 BOHM’S PROPOSAL OF QUANTUM GUIDANCE 2
1.3 QUANTUM BROWNIAN MOTION 4
1.4 CONTRIBUTIONS 6
1.5 ORGANIZATION 7
CHAPTER 2 STOCHASTIC OPTIMAL CONTROL 9
2.1 VARIATIONAL APPROACH TO OPTIMAL CONTROL 9
2.2 DYNAMIC PROGRAMMING APPROACH TO OPTIMAL CONTROL 10
2.3 RANDOM WALK AND WIENER PROCESS 12
2.4 STOCHASTIC OPTIMAL CONTROL 16
2.5 OPTIMAL CONTROL OF A 1D STOCHASTIC SYSTEM 19
CHAPTER 3 OPTIMAL QUANTUM GUIDANCE LAW 21
3.1 TREATING QUANTUM MECHANICS AS A PURSUIT-EVASION GAME............21
3.2 OPTIMAL QUANTUM GUIDANCE LAW 25
3.3 RELATION TO QUANTUM BROWNIAN MOTION 29
CHAPTER 4 QUANTUM HAMILTON MECHANICS 31
4.1 QUANTUM HAMILTON EQUATIONS IN CLOSED GUIDANCE LOOP 31
4.2 RELATIONS TO QUANTUM OPERATORS 33
4.3 QUANTUM POTENTIAL FLOW 35
CHAPTER 5 QUANTUM TRAJECTORY UNDER OPTIMAL GUIDANCE LAW 42
5.1 SOLVING STOCHASTIC DIFFERENTIAL EQUATION 42
5.2 TRAJECTORY INTERPRETATION OF UNCERTAINTY PRINCIPLE 43
5.3 RECONSTRUCTING PDF BY OPTIMAL QUANTUM TRAJECTORIES IN THE COHERENT STATE 47
5.4 IMPROVING THE NUMERICAL ACCURACY OF OPTIMAL TRAJECTORY….. 53
5.5 RECONSTRUCTING PDF BY DIFFERENT INITIAL DISTRIBUTIONS…….. 58
5.5.1 UNIFORM DISTRIBUTION…….. 59
5.5.2 NORMAL DISTRIBUTION…….. 63
5.6 TESTING WITH FREE GAUSSIAN WAVE PACKET…….. 67
5.7 COMPARISON WITH BOHM'S GUIDANCE LAW 82
CHAPTER 6 CONCLUSIONS AND FUTURE WORK 94
6.1 CONCLUSIONS 94
6.2 FUTURE WORK 95
REFERENCES 97
PUBLICATION LIST 101
VITA…………………………………………………………………….....102
參考文獻[1] Price, C. F., “Optimal Stochastic Guidance Laws for Tactical Missiles,” The Analytic Sciences Corporation, TR-170-2, 1 April, 1971.
[2] Hexner, G. and Shima, T., “Stochastic Optimal Control Guidance Law with Bounded Acceleration,” IEEE Transactions on Aerospace and Electronic Systems, 43, 2007, pp. 71-78.
[3] Ben-Asher, J. Z. and Yaesh, I., Advances in Missile Guidance Theory, AIAA Press, Washington DC, 1998.
[4] Zarchan, P., Tactical and Strategic Missile Guidance, AIAA Press, Washington DC, 1994.
[5] Bohm, D., “A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables,” Physical Review, 85, 1952, pp.166-193.
[6] John, M. V., “Probability and complex quantum trajectories,” Annals of Physics, 324, 2009, pp. 220-231.
[7] Wyatt, R. E., Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, Springer, 2005.
[8] Holland, P. R., The Quantum Theory of Motion, Cambridge University Press, Cmabridge, 1993.
[9] Kan, K. K. and Griffin, J. J., “Single-particle Schrödinger fluid, Part I. Formulation,” Physical Review C, 15, 1977, pp. 1126-1151.
[10] Hirschfelder, J .O., Christoph, A. C. and Palke, W. E., Quantum mechanical streamlines, Part I. square potential barrier, The Journal of Chemical Physics, 61, 1974, pp. 5435-5455.
[11] Bohm, D. and Vigier, J. P., “Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations,” Physical Review, 96, 1954, pp. 208-216.
[12] Cushing, J. T., et al. (editors), Bohmian Mechanics and Quantum Theory: An Appraisal, Kluwer Academic Publishers, 1996, pp. 309-319.
[13] Bohm, D. and Hiley, B. J., “Non-locality and Locality of the Stochastic Interpretation of Quantum Mechanics,” Physics Reports, 172, 1989, pp. 93-122.
[14] Bohm, D. and Hiley, B. J., The Undivided Universe, Routledge, New York, 1993.
[15] Fürth, R., “Uber einige Beziehungen zwischen klassischer Statistik und. Quantummechanik,” Z. Physik, 81, 1933, pp. 143-162.
[16] Kershaw, D. “Theory of Hidden Variables,” Physical Review, Vol. 136, 1964, pp. 1850-1856.
[17] Nelson, E., “Derivation of the Schrödinger Equation from Newtonian Mechanics,” Physical Review, 150, 1966, pp. 1079-1085.
[18] Comisar, G. G., “Brownian-Motion Model of Nonrelativistic Quantum Mechanics,” Physical Review, 138, 1965, pp. 1332-1337.
[19] Rosenstein, B., “Quantum Mechanics as a Stochastic Process with a U(1) Degree of Freedom,” International Journal of Theoretical Physics, 23, 1984, pp. 147-156.
[20] Goldstein, H., Poole, C. and Safko, J., Classical Mechanics, Addison Wesley, 2002.
[21] Lanczos, C., The Variational Principles of Mechanics, 4th Edition, Dover, New York, 1986.
[22] Bryson, A. E. and Ho, Y. C., Applied Optimal Control, Taylor and Francis, New York, 1975, Chap. 14.
[23] Schrödinger, E., “An Undulatory Theory of the Mechanics of Atoms and Molecules,” Physical Review, 28, 1926, pp. 1049-1070.
[24] Bellman, R., Dynamic Programming, Princeton University Press, 1957.
[25] Yang, C. D., “Quantum Hamilton Mechanics: Hamilton Equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom,” Annals of Physics, 321, 2006, pp. 2876-2926.
[26] Walpole, R. E. and Myers, R. H., Probability and Statistics for Engineering and Scientists, Macmillan Publishing Company, New York, 1985.
[27] Arnold, L., Stochastic Differential Equations – Theory and Applications, John Wiley & Sons, New York, 1974.
[28] Kappen, H. J., Stochastic Optimal Control Theory, Radboud University, Nijmegen, the Netherlands, 2008.
[29] Liberzon, D., Calculus of Variations and Optimal Control Theory, Princeton University Press, New Jersey, 2012.
[30] Yang, C. D., Complex Mechanics, Progress in Nonlinear Science, Vol. 1, Asian Academic Publisher, Hong Kong, 2010.
[31] Yang, C. D., “Trajectory Interpretation of the Uncertainty Principle in 1D Systems Using Complex Bohmian Mechanics,” Physics Letters A, 372, 2008, pp. 6240-6253.
[32] John, M. V., “Probability and complex quantum trajectories,” Annals of Physics, 324, 2009, pp. 220-231.
[33] Chou, C. C., Sanz, A. S., Miret-Artes, S., Wyatt, R. E., “Hydrodynamic view of wave- packet interference: Quantum caves,” Physical Review Letters, 102, 2009, pp. 250401.1-4.
[34] Wyatt, R. E. and Rowland, B. A., “Computational Investigation of Wave Packet Scattering in the Complex Plane: Propagation on a Grid,” Journal of Chemical Theory and Computation, 5, 2009, pp. 443-451.
[35] Chou, C. C. and Wyatt, R. E., “Quantum trajectories in complex space: One-dimensional stationary scattering,” Journal of Chemical Physics, 128, 2008, pp. 154106.1-10.
[36] David, J. K. and Wyatt, R. E., Barrier scattering with complex-valued quantum trajectories: Taxonomy and analysis of isochrones, Journal of Chemical Physics, 128, 2008, pp. 094102.1-9.
[37] Chou, C. C. and Wyatt, R. E., Quantum vortices within the complex quantum Hamilton-Jacobi formalism, Journal of Chemical Physics, 128, 2008, pp. 234106.1-10.
[38] Chou, C. C. and Wyatt, R. E., “Quantum streamlines within the complex quantum Hamilton- Jacobi formalism,” Journal of Chemical Physics, 129, 2008, pp. 124113.1-12.
[39] Goldfarb, Y., Schiff, J., and Tannor, D. J., “Complex trajectory method in time- dependent WKB,” Journal of Chemical Physics, 128, 2008, pp. 164114.1-21.
[40] Goldfarb, Y., Degani, I., and Tannor, D. J., “Semiclassical approximation with zero velocity trajectories,” Journal of Chemical Physics, 338, 2007, pp.106-112.
[41] Sancho, J. M., and San Miguel, M., “Analytical and Numerical Studies of Multiplicative noises,” Physical Review A, Vol. 26, 1982, pp. 1589-1609.
[42] Goldman, I. I., Krivchenkov, V. D., and Geilikman, B. T., Problems in Quantum Mechanics, Dover, Mineola, 1993.
[43] Burden, R.L. and Faires, J.D., Numerical Analysis, Thomson Brooks/Cole, Belmont, 2005
[44] Hagelstein, P.L., Senturia, D.D., and Orlando, T.P., Introductory Applied Quantum and Statistical Mechanics, John Wiley & Sons, Hoboken, 2004
[45] Su, K.C., “Complex State-Space Realization of Quantum Systems: An Optimal Stochastic Control Approach,” Ph.D. Dissertation, National Cheng Kung University, 2012

No comments:

Post a Comment