Open Archive
Abstract
We study intersection properties of Wiener processes in the plane. For each positive integer k we show that k independent Wiener processes intersect almost surely in a set of Hausdorff dimension two, and that the set of points a single process visits at least k distinct times also has dimension two. We construct a functional on configurations of k independent Wiener processes that measures the extent to which the trajectories of the k processes intersect. We prove certain Lp estimates for this functional and show that it is a local time for a certain vector-valued multiparameter stochastic process.References
- 1.
- Markov Processes and Potential Theory
- Academic Press, New York (1968)
- 2.
- First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path
- Trans. Amer. Math. Soc., 103 (1962), pp. 434–450
- 3.
- Stochastic Processes
- Wiley, New York (1953)
- 4.
- Multiple points of paths of Brownian motion in the plane
- Bull. Res. Counc. Israel, 3 (1954), pp. 364–371
- 5.
- Geometric Measure Theory
- Springer-Verlag, New York (1969)
- 6.
- On the Hausdorff dimension of the intersection of the range of a stable, process with a Borel set
- Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), pp. 90–102
- | |
- 7.
- Some theorems concerning Brownian motion
- Trans. Amer. Math. Soc., 81 (1956), pp. 294–319
- | |
- 8.
- Diffusion Processes and Their Sample Paths
- Springer-Verlag, Berlin (1965)
- 9.
- Une propriété métrique du mouvement brownien
- C. R. Acad. Sci. Paris Sér. A, 268 (1969), pp. 727–728
- |
- 10.
- The P(φ)2 Euclidean (Quantum) Field Theory
- Princeton Univ. Press, Princeton, N.J (1974)
- 11.
- The Hausdorff α-dimensional measure of Brownian paths in n-space
- Proc. Cambridge Philos. Soc., 49 (1953), pp. 31–39
- | |
- 12.
- The exact Hausdorff measure of the sample path for planar Brownian motion
- Proc. Cambridge Philos. Soc., 60 (1964), pp. 253–258
- 13.
- Multiple points for the sample paths of the symmetric stable process
- Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 5 (1966), pp. 247–264
- | |
- 14.
- Local time and a partical picture for Euclidean field theory
- J. Functional Analysis, 30 (1978), pp. 341–357
- | | |
No comments:
Post a Comment