Sunday, May 3, 2015

方差 Variance 正定矩阵 正定二次型 隐形眼镜 鸭舌帽 护翼型卫生巾 拉格朗日把最小作用量原理推广到具有质量mi的n个质点的任意系统。这些质点彼此之间以任意方式处于和距离的任意次幂成正比的有心力的作用之下。在这种情况下,系统的运动由取和式的极大或极小值条件所决定。

 

whale|抛砖引玉的砖 2009-12-22 19:21:12

2009-12-21 09:23:51 楚天舒 (Google on a surface)
正定二次型的一个典型例子,隐形眼镜,其零点是唯一的。
半正定的二次型的一个典型例子是鸭舌帽的帽舌,其零点是一条线。
不定型的典型例子,工作中的护翼型卫生巾。护翼部分在零下,其他部分在零上

PPT]第十四章达朗贝尔原理
star.aust.edu.cn/jpkc/six/kejian/kejian/14.pps
轉為繁體網頁
二、质点的达朗贝尔原理. 将惯性力引入牛顿第二定律中得:. --质点的达朗贝尔原理. 即:质点在主动力,约束反力和虚拟的惯性力的共同作用下处于平衡状态。

 

第三章、最小作用量原理

         (一)

把物理学和力学联系在一起的相对性原理,守恒原理不同于把物理学从力学中分离出来的不可逆原理。它们都有长久的历史准备。这些原理很久以来或是以某种很特殊的形式。或是完全相反是以很一般的,并且甚至是模糊的形式为人们所知晓。这就是下面要讨论的变分原理。[1]
表征实际发生过程的某个量的最小值的概念最早是在运用于各别现象,即光的反射而被提出来的,海仑·阿列克山德里斯基说过:光的反射定律可以从最短光程条件得出来.光速在反射时也不变,因此最短光程就对应着最短时间。这一要求是普遍适用的。并且由此还可以得到折射定律。1662年费马根据以后称之为费马原理的最短时间原理求出折射定律。如果光速u在点AB之间的路径上连续变化,费马原理就可以表示为要求速度的倒数沿路径积分,即:
   
在力学中类似于费马原理的原理到十八世纪才为人所知晓。但是最早提出这个原理差不多和费马同时,1669年莱布尼茨在意大利旅行时写了一篇研究动力学基本问题的论文。这篇论文过了廿年之后才发表[2]。在此论文中引入了作用量(《actio  formalis》)这一概念,即质量速度和路径长度的乘积。而路径长度等于速度和时间之积,因此作用量同样确定为质量,速度平方和时间的乘积,即活力乘上时间。在一封信中(但其真实性曾遭到怀疑)莱布尼茨写道,当物体运动时,作用量通常取极大或极小值。[3]
过了若干年到,1744年莫培督提出了把最小作用量作为运动和平衡的普遍规律的主张。当他写到“作用量”时是把一专门术语理解为质量,速度和物体所通过的路径的积。物体将以使其作用量为最小的方式运动;当物体的微小运动是以最小作用量为特征时物体就达到平衡状态。就十八世纪的情况来说莫培督的著作挑起了前所未有的激烈的争论。靠牛顿力学支持的、单一的、因果联系的观念此时已经被纳入反对神学教义的思想斗争的武库之中。而在力学里面,根据目的论的原则,或是至少根据被赋予目的论式原则推出力学规律的观念也表现出来了。莫培督不但赋予最小作用量原理以目的论的形式,而且还有目的论的色彩。他主张,如此合乎目的组建起来的整个自然界可以用证实了“造物主的存在和智慧”这一目的唯一原则来解释。达朗贝尔在《百科全书》中用一系列论文回答了莫培督,而伏尔泰则是用机敏的,辛辣的抨击短文回答了他。许多人都卷入到这一争论之中。追随百科全书派的思想家们嘲笑莫培督的目的的概念。欧拉总的说来是不愿意在科学问题的论文中引入宗教动机,但是这时作为一个反对自由思想的宗教卫士,在这场思想战线的斗争中,确实是以某种修正意见参加到莫培督这一方。但是,在莫培督的著作中还有不久后欧拉发表的最小作用量定律所表现出来的更深刻更完善的研究工作中的真正思想很快就撑破了本来为宗教辩护的目的论的外壳。
由于所受神学教育的原因,本来在一定程度上支持莫培督的欧拉在那时却为消除最小作用量原理的神学色彩而作了许多工作,这也就是欧拉对最小作用原理所进行的研究是同建立变分计算联系在一起的。
1696年,由约翰·伯努利提出并解决的最速落径问题对于变分计算的形成过程有着特别重要的意义。在点M1M2之间可能有无数条曲线通过。在这些曲线中有一条曲线具有以下性质:一个质点在其重力作用下从M1M2沿着这条曲线运动时可以比沿着另外的任何一条曲线都更快地达到终点。通过M1M2的每一条曲线都对应着连续的和连续可微的函数y=f(x)。质点在重力作用下从M1运动到M2的时间将等于某个积分T。这就需要从一切可能的函数f(x)中选择出那样一种使得积分T取最小值的函数。    
在解决最速落径问题的时候,伯努利同时还指明了解决类似问题的一般方法,其中有一个就是所谓等同问题。这个问题要求找到某一种封闭曲线,一方面曲线长度保持不变,另一方面还要使由此曲线所限制的面积取极大或极小传值。对这种情况,伯努利提出了一个原理。照这个原理来说,倘若曲线提供了极大值或极小值,那么曲线的每一个无限小的部分也同样具有这一特性。这个原理没有普遍义,在许多情况之下曲线并不具有上述质。可是由于注意到伯努利提出的原理在被证实为正确时的那些条件,这就使欧拉在阐述最小作用量原理上迈出了十分重要的一步。莫培督研究了物体所通过的所有的路径,欧拉由于注意到路径元同样可以给出作用量的极大值或极小值,他研究了这样的路径之后就在其方程中以路径元ds代替有限路径了。1697年,约翰·伯努利又推出一个求最小值的问题,即导出任意曲面上的给定两点间的最短程线问题。在解决此问题时,伯努利得到了用于确定测地线的一些主要的结果,他还建议欧拉去研究这一问题。在十八世纪二十年代末到三十年代,欧拉多次致力于变分计算领域内的工作。1744年发表了欧拉的名著《求具有极大值或极小值或是在更广泛的意义上来说,解决等周问题的方法》[4]欧拉把一篇不长的论文安置在附录工之中,这篇论《用极大值和极小值的方法确定在没有阻力的介质中抛体运动的问题》,他在此论文中指出,当物体在向心力的作用下,从点A以速度v运动到点B时它将描绘出某个轨迹,该轨迹对应于积分 的极大值或极小值。
欧拉注意到由他所简单阐述的原理只是在适用于活力定律的情况下才能应用。相反,莫培督认为作用量的最小数量原理比活力定律更广泛。但是在欧拉的论文中,最小作用原理获得了比莫培督原理为普遍的特微,莫培督只是研究了有限的并且是间断的速度变化。与此相反,欧拉根据最小作用量原理可以得到轨迹的微分方程,这样一来最小作用量原理就可以用于连续运动的情况了。总之,在欧拉的工作之后,莫培督的研究只有历史上的意义,这样说并不过分。欧拉解决了一系列关于抛体运动的问题,并且使问题的条件进一步复杂,从研究均匀的重力场开始,接是高度函数的场;还有两个相互垂直的力对物体的作用等等。欧拉总的结论是在介质无阻力时最小作用原理具有普遍意义。这个原理不仅关系到单个物体,而且也关系到若干物体构成的体系。
欧拉的这种观念在比他年轻的同代人拉格朗日那里得到了充分的发展。在把力学变成了纯粹的数学分析的学科之后,拉格朗日还把使人惊叹的数学上优雅完美的特点赋于力学。这时应该说一说这个概念的内容和意义,所谓完美就是解的普遍性。然而优雅完美的准则对数学科学而言决非最重要的,无怪乎波尔茨曼曾经说过“裁缝和鞋匠也要保持优雅完美”。就在力学中,当力学为超出力学本身范围的规律创造出一种形式化的工具的时候,在这种时期,力学的完善优美的准则曾起到特别重要的历史作用。此时由于数学上的完美性、普遍性,因而无须动用力学和几何学的概念就可以把已经建立起来的数学分析的关系推广到一些新观象的范围里去。
还在1760——1761年的两篇研究最小作用量原理的论文中,拉格朗日就把欧拉的结果作了推广。无论欧拉对于把最小作用原理推广到多个质点之可能的见解如何,在他的著作中,这个原理还是针对一个质点来进行的。拉格朗日把这一原理推广到具有质量min个质点的任意系统。这些质点彼此之间以任意方式处于和距离的任意次幂成正比的有心力的作用之下。在这种情况下,系统的运动由取和式的极大或极小值条件所决定。 即:
        
拉格朗日引入的所谓等能变分的概念很重要,也很富于成效。问题的实质是拉格朗日从活力守衡原理出发导出了最小作用量原理。他比较了连接点A,B的满足能量守衡要求(E=const.)的轨迹,并得到以下结论;对应于量  
取极小值的轨迹,将是那些轨迹中的真实轨迹。在一般情况下,当总能量E=T+U相同时,质点将以不同的时间间隔通过AB之间的空间路径。在空间中不同地点的势能一般来说是不同的,因而在总动能量E不变时动能应当发生变化,也就是说质点速度要发生变化。不同的速度也就意味着质点从A移动到B所需要的时间间隔不同。倘若在质点上没有力的作用,则问题就变成确定质点在恒定的速度下用最短的时间所走过的空间路径。显然,这个路径将是直线。在拉格朗日所赋予的那种形式下的最小作用量原理可以认为是力学的根本原理。它不仅以要求某种积分不变的条件限制质点或质点系的运动,而且还以单值的形式指出了在已知初始条件时系统和质点实际上要如何运动。能量守恒原理所指出的只是什么样的运动是可能的。在物体运动的每一种情况下能量守恒原理都能得到一个方程,然而一个方程是不能单值地决定实际的运动。为此有多少表证运动的独立坐标就需要有多少方程,比如确定自由质点的运动就需要三个方程。最小作用量原理却提供了必要数量的方程。在提出极大或极小值问题之后就为每个独坐标提供了其所特有的方程。最小作用量原理以其积分的特征而区别于另外一些变分原理。它所研究的不是表征各个点运动的这样一些所谓运动的微分属性,如在某点的速度等,而是研究表征在一个有限区间隔上的沿着某个路经积分来量度的运动的属性。由此可见在变分问题的公式中所以不包含点的坐标。从数量中来说,上述间隔和点的坐标无关,并且是坐标变换不变量。因此最小作用量原理所表征的是与坐标系的选择无关的运动。
莫培督和欧拉的量小作用量原理的特征就是这样一种情况,可是他们并没有明确地认识到初始条件在单值地确定质点或系统运动时所起的作用,在拉格朗日所提出的量小作用原理的公式中,初始条件的意义是十分明显的。
拉格朗日认为最小作用量原理,纯粹是从动力学方程得到推论,同时反对把它当成是宇宙间的普遍原理的观念。这一情况是同他对先验论的思想体系的敌对的态度联系在一起的。拉格朗日对待力学,特别是对最小作用量原理所持的态度就同他对待微分计算(原理)一样。马克思在说到拉格朗日时这样写道:“…至于说到纯粹分析,拉格朗日事实上摆脱了牛顿的流数,莱布尼茨的各阶无限小量,消失量的极限理论,作为微分量系数的符号的 0/0=dy/dx 等等中的所有那些在他看来是形而上学的先验的东西。”[5]
拉格朗日彻底抛弃了对最小作用量原理的形而上学的认识,并把它解释为纯力学的原理。而且因为在拉格朗日那里,力学是变分问题的一个特殊阶段,这样,原理就好象完全被形式化了。对原理加以形式化是扩展其物理内涵的条件。拉格朗日的分析力学的概念和方法,首先是广义坐标法,其总的历史作用也正体现在这里面。上述拉格朗日的基本方法和最小作用量(分析力字的基本概念)已然获得了如此广泛的形式,但还欠一步,有了这一步最小作用量原理就从力学的原理变为物理的原理,而广义坐标的方法同样也就是从力学的方法变为物理的方法。[6]
这最后一步是由哈米顿和另一些十九世纪的学者所实现的。我们不准备谈哈米顿科学活动的传记,然而有一个情况必须提起注意。这就是光学的问题已成为导致哈米顿发现力学变分原理之新形式的出发点。在莫培督的著作中,对光学的研究在使力学向着概括范围更大的方向发展所起的作用是十分明显的,而这种发展日后要影响到不能归结力学的物理过程。在拉格朗日的著作中,并没有力学与物理学(在这种情况下是光学)之依存关系的“个体发生学”的证据。可是在哈米顿的著作中,在这位学者自己的创造性工作的道路上我们就会遇到光学与力学的联系。哈米顿研究工作的第一阶段就是致力于光学,并提出园锥折射的予测,这种予言被实验证实是正确的,并且和海王星及门捷列夫预期的新元素的发现一起成为科学预见的经典的范例。在他的著作中,在几何光学方面哈米顿力求找出可以完全表征系统的某个函数。就此问题哈米顿曾这样写道:“在其他关系上这一函数在原作者看来好像是极其高度概括结果的表达式…,这个著名的结果一般被称为最小作用规律,有时叫最小时间原理,它里面包含着迄今为止所揭露的确定光线传播路径状况与形式的全部法则以及由正常或反常折射,反射所造成的传播路径的方向的改变。如果光线沿着它自己实际的路线进行而不是沿着其他任何一条路线进行,或者至少是从方法上来说具有被叫做变分等于0的路线进行时,那么,在一种理论中是作用作量来表示的某个量,而在另一种理论中则是光从一点传播到任一点所耗费的时间,二者都是将取最小值”。[7]这样,哈米顿在此就已然指明力学中的最小作用原理和光学中光传播的最小时间原理的密切关系。从费马原理出发哈米顿研究了充分地表征光学系统的函数: 
这里Ax0y0z0)和Bxkykzk)是边界点的函数。为了要从
                 δV=0
这一要求确定函数V,哈米顿把V当成边界点的函数,并且求得指出光线的方向的余弦和边界坐标关系的方程。这些关系类似于力学中的拉格朗日方程,而且函数就相当于作用量积分。
以后哈米顿又提出:几何光学可以运用与光传播的波动图景或微粒图景无关的同一数学分析的概念。在决定光的几何特性上光的微粒说和波动说在很大范围内都导致同一结果。光线可以认为是垂直于某个波阵面的直线,也可以认为是光粒子的轨迹。然而观点改变并不会使数学工具发生变化。这一情况也显示出在力学过程和光学过程之间的深刻的类似的基础。这一深刻的相似已然为哈米顿所提出,并且在日后建立新的物理理论中起着重要的作用。
在卅年代哈米顿把变分原理系统地运用于动力学问题。第一编著作写于1833年,哈米顿把它称之为《用我的特微函数研究的三体问题》。此后又发表了一系列其他著作。在这些著作中他所阐明的变分原理总的说来不同于最小作用量原理。按照哈米顿原理,这里不是用动量沿路径的积分而是用另一个量的最小(或最大)值表征质点的真实路径,这个量就是拉格朗日函数对时间的积分。若t0时刻质点在第一个位置,t1在第二位置,现比较在给定的时间内质点所通过的联接这两个点(质点的位置)且适合于约束的那些不同的路径,拉格朗日函数的积分
对于真正的路径来说将取极小值或极大值。这样,此处情况就和最小作用原理不同,已然撤销了在实行比较的各个路径上要有个恒定的能量数值的要求。出现在积分号下面的是另外一个函数,量W不只可以取极小值,而且可取极大值,就如同
那样,对真正的路径来说有最小值。
对保守系而言,拉格朗日函数将等于动能与势能之差,即 L=TU 此时哈米顿原理和最小作用原理一致。从积分的等能变分过渡到新的,要求拉格朗日函数对时间积分的变分取0的变分原理,这件事对实际运动来说具有头等重要的历史意义。要是能量在某个时间隔内发生变更,那么不只可以排除点 A B 的坐标而且也无须再假定质点组全体从空间的一个点转移到另一个点,换句话说,变分原理不仅仅属于力学过程。
力学基本原理的这样一种重要的推广对于目的论的主张来说自然是有利的,不过这并不是哈米顿本人在此问题上的过错。和拉格朗日一样,哈米顿力求赋予力学变分原理以尽可能严谨的形式化的数学形式。他反对那种目的论的“自然界的经济”原理。他这样写道:“这样一来尽管最小作用原理已然加入到最高级的物理理论行列。然而它对于宇宙发展论的必要性及宇宙中经济原则等主张现时总是遭到排斥的。”[8]
与此同时哈米顿认为最小作用量原理极为广阔,不只与动力学,光学相关,而且也涉及到全部物理学。在一封信中,他谈到囊括所有物理基本问题并且从最小作用原理推出其解答的单一的理论,这种理论体系当然是未来的事了。哈米顿写到“目前要是动手研究这一最广泛的把最重要的物理现象都归并在一起的课题或许是轻率的,不过要是指出这种动力学原理仅仅是我们已然在光学中运用过的那种观念的另一种形式或许还是恰当的”。[9]
实际上从最小作用量原理严格地推出物理规律的可能性要求把它从先验论的物理解释尤其是形而上学的解释中解脱出来。哈米顿指出“我对动力学的研究现在处于完全不同的方向,这一方向使我要对积分质点系微分方程之严谨的的,普遍的表述体系进行研究”。[10]
对最小作用量原理所做的进一步形式化的工作是雅考毕在十九世纪卅年代所完成的。他又把新的形式赋予这一原理。对一个只有质量m的质点而言 哈米顿原理在新的形式上变得很简单。雅考毕把质点的两倍动能 T 乘上时间 dt。两倍动能可以认为是质点质量与其速度平方之积。
   这里ds是质点轨迹的长度。把2t乘上dt之后得到。
 
在最小作用原理的表示式中积分号下面的并不是作用量,即能量乘以时间。我们可以把最小作用量原理表示为
 
把积分表示为新的形式,则
在这种条件下,不是对时间而是对路径求积分。如果力是保守的,且动能T等于总能与势能之差,则上式就是可用另一形式替代
 
在此式中雅考毕提出了一个质点的最小作用原理。也可以把它推广到质点系。这里重要的不是对时间而是对路程取积分。对一个质点而言相应于最小作用量的路径是三维空间中一条确定的曲线。对于质点系而言我们可以把实际的运动认为是多维空间中的轨迹。
我们取一质点,该质点在某一曲面上作惯性运动。这一质点正处于离心力和反作用力相互平衡的作用下。这一对力没有切向分量,因而质点速度的绝对值保持不变,也就是以不变的速度沿测地线运动。这样问题就归结为寻求测地线。于是变分原理在相当大程度上实现形式化的数学关系,也就是几何形式。正如我们以后所见到的那样,这种形式是极为有效的。下面将简要地谈一下对变分原理继续进行形式化的历史意义。
形式化在历史上的双重的进步意义,首先拉格朗日所说的一切都影响到哈米顿和雅考毕。当力学从属于物理规律,而且在力学中不只为其自身,同样也为适用于其他领域准备了工具的时候,那种显示已然失去力学解释的动力学规律的表象就成为这种准备工作的重要方面之一。广义坐标法和最小作用量原理就从按力学自身意义上来说是力学的,然而却是广义的运动规律,变成为物理学的方法和原理。以前说过,把力学规律作出这种推广的前题从一方面说是数学,因为数学总是较为全面地回答它所提出的问题;从另一方面说则是在十七至十八世纪对力学所进行的哲学上的总结。在哈米顿的著作中,作为力学原理的最小作用量原理的更为精美的形式得以进一步发展的时候,这就意味着它已然成为一种潜在物理原理。数学发展中所蕴含的力量和在力学需求的刺激下出现的数学中的“自由竞赛”已然把科学推向前进,使科学得到的已然不是力学而是物理学的解释了。哈米顿,雅考毕致力于最小作用量原理的著作的历史性的进步意义就在于此。
问题的第二方面是对力学概念所进行的哲学上的总结。除去因历史局限性出现的形而上学的绝对化的趋向之外,实际上把原始的模式的推广和变更这两方面综合在一起的工作已然在发展着的科学史出现了。当然,直到阶级斗争的实际变化情况,(特别是在工人运动中反击伪社会主义思想上的冒牌货的时候)使得对自然科学作出辩证的综合概括已成为马克思主义的首要任务的时候,直到在“反社林论”中对此问题作出解答之前,这种综合概括一直是在自发地进行着。然而这种自发的形式在十八和十九世纪先进的自然科学家世界观中反形而上学的动机对于科学发展却具有重大的意义。就是那个企图充当“自然体系”作者的拉格朗日,那个被包斯考维奇[11]声言要处以火刑的伪君子拉格朗日,那个欧拉在致“德意志公爵夫人的信”中讥笑是在作神学练习的拉格朗日却自觉地占据了十八世纪思想战线上反形而上学的阵地,自觉地力求消除最小作用量原理上的形而上学的色彩。哈米顿和雅考毕是自发进行这一工作。在当时对“适合于一定目的地起作用的自然界”的讨论重复过多次,然而已经可以看出这是落后于时代了。在十九世纪对最小作用量原理所进行的这样或那样的形式化的工作表明它已然从由莫培督开始的形而上学的传统中解放出来了。
雅考毕准确地指出了最小作用量原理的意义。这个意义首先在于把这一原理和拉格朗日的微分方程联系在一起“……其一是拉格朗日用于提出运动微分方程的形式,其二是给出了这样一种函数,当这些方程得到满足时,此函数取极小值”[12]同时雅考毕还提出在对此原理作出合理解释的情况下,也就是在确已查明它同运动微分方程的联系之后也就不再为最小作用量原理的“形而上学的原因”保留什么地位了。
继哈米顿的雅考毕之后,奥斯特洛格拉斯基[13]为最小作用量原理的发展作出了新的,重要的贡献。1848年在圣彼得堡科学院报告文集中他根椐比哈米顿更为普遍的条件提出了最小作用量原理。哈米顿当时假定受最小作用量原理所支配的系统不是自由系统,它被这一条件所限制,即其动能为广义速度的二齐次函数,并由此提出稳定约束的假定。在1848年奥斯洛格拉斯基不用这一条件而研究了最小作用量原理。
在十九世纪后半期由于索富斯. [14]和其他数学家的工作(对这些人正象对奥斯特洛格拉斯基一样,那些动力学问题乃是更普遍的,在本质上是微分方程论及计算这些数学问题的个别情况)经过仔细研究的哈米顿雅考毕力学的合乎逻辑的数学工具被建立起来。其中最重要的是把变分原理和一特殊的变换理论即被称为切触变换的理论联系起来。这种变换从几何上可以解释为某种曲面的改变,以后具体到物理上可以解释为等作用量曲面的变更。从另一方面来说变分原理又可以解释为质点的运动规律,这样,物体沿确定的轨迹运动和某种曲面的传播,这两种物理形象就由此而接近起来了。这种接近一出现,波动过程理论和离散物体运动理论二者 统一起来的问题也就提到科学之中了。这两种理论在非古典物理中即在本世纪廿年代的波动力学中得到统一。这里对古典物理学所进行的数学概括在为非古典理论所做的准备工作上的作用显得十分鲜明。
从哈米顿原理的纯力学解释过渡到为非古典概念作出准备的更为普遍的认识在很大程度上是以自发的形式进行的。作为思想家的赫姆霍茨力图把物理过程归结到它们的力学基础上来,并且也只是在纯力学的意义上去理解最小作用量原理。1886年他把这一原理系统地运用于力学,热力学和电动力学等问题。他引入了促进概括这一原理的物理解释的动势的概念。所谓动势,是这样一个量,将它对时间求积分就可以得到作用量。而且不用对该量作任何力学解释,就可以出现于物理学的各个不同领域之中。在赫姆霍茨的著作中,并没有把动势解释为导出量,即动能和势能之差,而解释成作为出发点的量,因为动势有可能不同于TU这一力学概念,所以上述情况对过渡到最小作用量原理的非力学的认识来说是重要的一步。在力学以外,也就是动能和势能的差异失去直接的意义的场合,在给出能量时动势可能取得单值形式。由于动势概念是独立的,因之就可以把最小作用原理认为是物理上可逆过程的普遍原理,这样一来,也用不着把它归结为力学的规律了。换言之,也就是不必把最小作用量原理作为力学原理加以解释。
由于在电动力学中无需任何一种力学模型就可以阐述其内容和引用哈米顿原理,所以普朗克这样写道: 最小作用量原理所经过的历程和能量守恒原理相同;“能量守恒原理起初同样认为是力学原理,只是由于作为机械论宇宙观的证据而赋予它普遍的意义。目前机械论宇宙观受到强烈的动摇,然而无论什么人都没有开始怀疑能量守恒原理的普遍性。如果现在把最小作用原理看成是纯力学原理,那么可能会不自觉地陷入片面性之中”。[15]从赫姆霍茨开始,他就运用哈米顿原理把最小作用量原理推广到电动力学和热力学的概念形式之中,此外从数学上对原理进行分析研究是上述推广的不十分明显的形式。在变分原理的历史中我们还会遇到高斯的名字。高斯可以说比其他任何一个人都更多地反映出十九世纪科学在数学,力学和物理学上的思维特征。这一特征就是断绝了同上个世纪的单线的,唯理主义的关系并为廿世纪非古典物理做出了准备。这些在其主要著作中都曾涉及到,不过更多地反映于其扎记的片断。这些扎记都是记载在书信,日记上或是在读过的书的空白处仓促写出。这些似乎是属于传记的情况却反映出十九世纪前期许多思想家的人生观,世界观的某些普遍的特点。如为辨证思维提供诸如浮士德”哲学百科全书”等不朽范例的强有力的思潮,以及在数学和自然科学中那种非直线”思维的不甚明显然而至少颇富成效地蔓延,总之,这一思潮的总体,归根结底全是十八世纪末席卷整个欧洲,并且以雅各宾党人专政达到顶点的,工业的,社会的,政治的,革命的结果。在法国以外革命的影响是间接的也是不鲜明的。“法兰西革命的德国理论”,即黑格尔的哲学方法,可以说是和国际政治结论相配合的。恩格斯这样写道 “……这个结论的特殊形式当然是下列情况造成的,黑格尔是一个德国人,而且和他同时代人歌德一样,拖着一根庸人的辫子,歌德和黑格尔在各自领域中都是奥林巴斯山上的宙斯,但是两人都没有完全脱离德国的庸人气味”[16]在这两个人的名字后面似乎要添上高斯的名字。他一方面有如数学上的宙斯那样英勇无畏地开拓,另一方面由于在“城邦分子的叫嚣”[17]面前感到害怕使哥廷根大学教授不得不对更为激进的数学,力学设想明智通达地保持缄默,这两者在高斯的传记中极富于特色地交织在一起。
 
 

第三章、最小作用量原理


             (二)


1819年,高斯在题为《论新的力学普遍原理》一书中,提出了作为更为普遍原理的结论,无摩擦的约束系统在任意力作用下将这样运动: 来自约束的对系统的拘束和施加于约束上的压力均取极小值。高斯用以下方式阐述了他的最小拘束原理。[18]
倘若质点是自由的,那么对以任何方式联系起来的,受任意影响的质点系来说,它在每一时刻的运动都要完全或只是有可能完全依照这些质点本来就有的方式进行活动,也就是说运动要以尽可能小的拘束进行。如果在无限小的瞬间,对每一质点的质量和该质点现在的位置的偏离量的平方之积取和,这个和则可作为对拘束的量度”。[19]Z表示这个和,由于所研究的质点是n个,则可写为
若没有内部约束则括号内的量将为 0 ,此时就有
括号内的差值不为零,说明质点与其自由运动出现偏离,也就是显示出来自内部约束的结果,也可以把上述差值看成是丢失的力除以质量。我们还记得达朗贝尔曾把作用于系统中,但不影响质点系所达到的运动的那部分力,叫做“被丢失的力”。 若以 Fk 表示此力,则
 
在上式中拘束量度曾作为高斯的最小二乘法表示式出现过。读者还记得,在1795年就已为十八岁的高斯所发现,但是到1818年才发表的这种著名的方法。这个方法能够由包含偶然误差的一系列测量中求得与真值偏离最小的量。[20]在最简单的情况下用最小二乘法得到的测量值的估计是测量中所得数值的线性函数。如果此时测量误差是偶然误差而且是独立的,并且服从正态分布,则最小二乘法就使得用最小的方差的平均值来估计这一未知的量成为可能。
yi(i=1,2,…,n)表示为定义量x进行的n次独立测量所得到值,pi表示测量的权这时就可以取值X作为量x的估计,对这一估计可用平方和的最小值表示:
要是这一表示式和高斯的拘束量度相一致,则质量的倒数相当于统计权而丢失的力相当于误差。
一方面是力学的普遍原理另一方面是误差理论的基本数量关系之一,即最小二乘法,它们二者之间相互对应,这对高斯来说是意味深长的。在最小拘束原理一文中,高斯是用这一句话来结束的。“很明显,当自由运动和系统的本质互不相容时,就要使其改变。正如几何学家所做的那样,在其计算中为使结论和问题的本质所规定的必要条件不发生抵触而对其计算运用最小二乘法从而改变了由直接计算而得到的结论。”[21]
在指出这种对应之后,高斯并未宣布其思想要向何方发展,因为上述对比在任何意义上来看都是极其显著”的,这里也许就象其他一系列情况那样,高斯不去发展,至少没有下决心公开宣布其最彻底的概念。不过很难判定对城邦分子叫嚣” 的畏惧就不影响到上述那些情况。
但是与这种见解无关的,在最小拘束原理和最小二乘法之间对应关系的物理解释,就像对非欧几何的物理解释一样,在十九世纪廿至卅年代同样是不可能出现的。要是最小二乘法和最小拘束原理间的类似是一种比单纯的相似更为深刻的相似,那么质点的真实运动和可能的运动之间的区别可就具有统计的特征了。由约束引起的作用使大量的质点偏离其自由运动,这好象是在客观表象里许多不同的,被忽略的原因引起大量的误差一样,在约束的作用下质点运动的变化获得统计规律的形式。不过要是质点在确定的路径上之运动认为是大量之作用的统计的平均结果,这只能在对质点自身同一性进行相对论化的基础上才有可能。当然,这将是一百多年以后的事了。但是现在我们还要再回到最小拘束原理。这个原理要求前述表示式中Z取最小值以使变分δZ等于零。变分并不改变第K个质点的位置xk ,速度 ,作用于系统上的约束条件和质量mk ,改变的只是加速度   。根据这些条件就可以得到该系统的拉格朗日方程,因此最小拘束原理和达朗贝尔原理一样也可以得到运动方程,从这个意义上同样可以把它认为是力学 的基本原理。和达朗贝尔原理一样,最小拘束原理也是一微分原理,它所研究的既不是过去也不是未来,仅仅是该系统在给定时刻的状态。这一状态决定系统以后的行为。这样,在此情况下,系统状态和系统在某个空间和时间隔中的全部行为的关系就和拉格朗日拉普拉斯机械的决定论不发生矛盾了。此外,上述关系的积分形式的原理就是莫培督原理和哈米顿原理。
高斯观念的发展是1892——1893年赫兹提出的最直路径原理。这个原理同时延续了雅考毕的思路,即对全部变分原理和动力学加以几何化。这一问题在众所周知,赫兹不用力的概念而要建立起力学的尝试中得到阐明。这个尝试是在《力学原理》这本书上讲的(1892)。[22]
赫兹在这本书上打算把力学归结为三个基本概念,即空间、时间和质量。因此骤然看来他的概念似乎是笛卡尔派的回潮,即力图建立动理学体系。然而这只是那些观念在逻辑上历史上实际关系的一个部分。赫兹在《力学原理》一书中仍旧是延续这一理论,力求把复杂的,不可归结为力学的十九世纪的物理概念还原为动理学图景。这个图景中有时也包含着假定的隐蔽的运动和质量。在十九世纪八十年代赫姆霍茨也曾进行过这尝试,他运用了遁环运动,这种遁环运动的特性与坐标量无关只取决于其变化的速度。
就赫兹而论,与其说他力求把物理规律归结为古典力学的概念,不如说他力求把古典力学概念本身归结为动理学模型。就历史而论,这种发展趋势与其说是把物理学归结为力学的这种意愿造成的,还不如说这是由于对力学的物理解释,由于力学基本概念的变化,以及由于具有能量量纲的一些标量进入力学之后所造成的。
赫兹特别强调他的力学和能量转化原理间的紧密联系。旧的力学把现象都归结为原子之间的一定距离上起作用的有心力。被引力联系在一起的各个分立物体的图景就是科学解释世界的最终目的。赫兹这样说道:“然而到十九世纪末,物理学已倾向于另一种观点,在能量守恒定律的发现对物理学发生强烈影响的作用下,在物理学中偏向于对凡是涉及到它的领域之中的现象,都着成是一种形式的能量向另一种形式能量的转化,并且只以发现现象归结为能量转化定律为最终目的。”[23]
然而赫兹并不要求用唯象的表示替代引力质量的力学图景,也就是说不打算让只包括作为基本量而不提出离散物体及其运动模型的公式所限制。所以赫兹就用某些隐蔽质量的实在的运动取代力。
如果意欲得到一个圆满的、自身完备的、合乎规律的世界图景,那么我们看到的实体背后应当容许有一种不为我们所视见之实体,并且也应当在我们的感觉之外寻求某种隐蔽之物的作用。即使就在最早的两种世界图景里我们已然承认了这种深深埋藏的作用的存在,并且可以把它设想为特殊类型的实质,现在为了在我们的世界图景中把它复制出来,所以建立了力和能量的概念”,[24]反过来看,这些概念也形成了这样一种印象,除了物质及其运动以外,似乎这个世界还存在着另一种实在。因此,赫兹才倾向于用隐蔽的运动和质量取代能量和力。
我们能够承认某种隐蔽之物会有其作用,但是我们也能够否认此物应属于某个特殊的范畴。于是就把采用下述方式的可能性展现在我们面前,这种隐蔽之物不会是别的,仍旧是运动和质量。它和我们视见之物的区别不在于其实质而只在于它和我们通常的知觉方式之间关系和差异,这一观点才是形成我们假定的本质。”[25]
赫兹并不是很快地接近其基本目标,即把世界图景归结为时间,空间和质量。起初他打算用运动质点动能的概念取代力的概念。把势能和一切形式的能量都归结为动能这种事在物理学中我们也遇到过。用普朗克的话来说:“赫兹拒绝接受动能势能间的区别,因而同时也就拒绝研究能量的特定形式时所遇到的一切问题,赫兹的看法不单是物质只具有质点这种唯一的形式,而且能量也只有动能这种唯一的形式。其余一切形式的能量,比如我们表示势能,电磁能,化学能和热能等,实际上表现为运动质点的动能,正是自然界中这些质点的位置,速度之间所存在的那些恒定不变的联系也才使所有形式的作用变得如此不同,这样,按赫兹的说法自然界中所有的运动最终只是建筑在物质惰性的基础之上”。
当赫兹谈到理论力学的新任务,谈到他力图把力学现象看成是一种形式的能量向着另一种形式能量的转化,直至把力学现象都归结为能量转化时,那么这时的情况就同十九世纪科学的实际发展趋势完全相一致了。力学实际经受着来自既不能归结为它但又从它里面解放出来的物理学影响。实质上,十八十九世纪所进行的把力学原因加以综合以及力求根据一个原理推演出力学的一切尝试都显示在这一发展趋势之中。力学发展中的两方向(即用数学工具加以概括和在力学中那种本质上是物理的能量与作用量概念的出现)本身就是联系在一起的,并且在历史上也互相支持。
赫兹力图建立的力学和牛顿不同,其基础不是力,而是物理学的基本概念。为此赫兹在他称之为具有数学特征的两个概念时间和空间后面它补充上两个具有物理本质的概念质量和能量。这些概念表示在孤立系统中仍旧保持不变的物理实质。空间、时间、质量、能量它们自身可以借助于哈米顿原理联系在一起。赫兹这样阐述了未来理论体系的基本精神:“天然质量的每一个系统好象都是完成这样一种任务而运动,既要在给定时刻达到给定位置,又要使在全部所论时间之中,平均说来动能和势能之差要取尽可能小的极值。”照赫兹看来这样一种表象比建立在力而不是建立在能量基础之上的牛顿的图景具有一系列优越性。
以后赫兹认为有可能建立第三个世界图景,在此图景中作为基本概念而引入的只有时间、空间和质量。这里不只是力,就是能量也应归结为空间、时间和质量这三个概念。而这三个概念被统一到好象是惯性定律的规律之中。“独立的物质系统的每一种自然运动是该系统要以恒定的速度按其最直路径之一所发生的运动”。显然,惯性定律和最小拘束原理都被统一到这一形式里面去了。
按照赫兹的理解所谓“直”的和“最直”的路径是什么样的呢?所谓直路径是全体路径元都有相同方向,且以此区别于有不同方向路径元的被弯曲的路径。在点的位置变化时,方向改变的速度对应于曲率。赫兹研究了表征最小弯曲的路径,这就是所谓最直路径。有时最直路径和最短路径相一致。这样赫兹就使几何概念即曲率的理论向力学的基本原理靠拢了。
在把最直路径原理和最小拘束原理加以对照之后,其意义就可以显示出来了。正如我们所看到的那样,高斯认为拘束的量度是
赫兹引入单位质量的概念(mk=1)以取代上面表示式中质量单位数mk。他只研究了自由系统和X等于零的情况,因此高斯的拘束量度就要取以下形式:
此式和高斯的公式除去mk=1Xk=0之外还有一个情况不同,即对加速度的平方要从1到N取和。N是对于应于赫兹力学中替代力的单位质量和约束的某个数。
接着赫兹又引入对于力学基本原理几何化这一任务至关重要的概念,即系统所经历轨迹之曲率K及长度元ds。轨迹的长度元ds是和引入所论系统的单位质量的轨迹的长度元dxk以二次式联系在一起
 
加速度 ,被xkds的二阶导数所代替,赫兹根据拘束的量度Z的高斯表示式得到下式:
 
此时所用的其它变换就不讲了,这里K(确切地说是k的平方根)就是轨迹的曲率。这个由Z所得到的量,对实际运动应取最小值即:
                         δK=0
当然“元长”和“曲率”表示式的意义是N维的,它们由相应的N维几何所决定,而且还是N维欧氏几何。因为路径元ds2是作为dxk的平方和而被定义的,即ds2=dx12+dx22++dxN2
从历史观点看赫兹力学的多维几何学的特征指出了一个重要的情况,赫兹并没有成功地把力学归结为三维空间中(那怕是隐蔽的质量)运动的动理学图景,他得到了多维的弯曲的空间,这件事最终指出了力的不可排除性,力代表了质量在其上按测地线运动的多维的曲面的弯曲。
按照赫兹的话来说,在提出质点系及其运动的几何表象时很容易看出,最小作用原理实质上就是几何原理“而这一原理的建立及发展可以完全独立于力学,并且也看出不出该原理同力学中所用的另外一些几何知识有更紧密的联系。”在对这种观念的发展中,赫兹又提出了一个结论,最直路径和测地线相一致。每条测地线也就是质点最直运动的一种形式,在多维空间中则是质点系的一种最捷运动形式。不过赫兹预先申明:测地线并不永远反映最捷路径。只有当运动质点或质点系的位置足够接近时测地线方能和最捷路径相一致。
上述赫兹和十九世纪后半叶某些其他物理学家的观念具有重要的历史意义。数学几何化,对照变分原理的几何化和多维几何的关系可以看出,对古典力学进行综合总结是如何为相对论准备了概念和方法。这件事不仅阐明变分原理的逻辑结构,同时也阐明了它的历史作用。到十九世纪末对力学变分原理几何化的尝试几乎没有停止。在一定程度上,赫兹那种用多维空间的点代表动力学系统的观点开始起着很重要的作用。在这种情况下,力场就要由被弯曲的,破坏其欧几里德性质的多维空间所表示。这样一来就可以把系统看成是自由的,力可以用约束取代,而约束则看成是多维空间的弯曲。系统从一个状态到另一状态的变化认为是某个点在测地线上运动。这样,对系统在力场中的运动来说惯性定律和变分原理间的区别就消失了。或者更确切地说这种区别就变成“平直”的多维空间和弯曲的多维空间之间纯属几何上的区别了。
后来的广义相对论实现这个纲领。广义相对论仅仅把引力场几何化。当然所谓“仅仅”应加上引号,这是因为从时空而言,万有引力是实物和场的普遍联系的集中点,因此在空间中(冲量守恒)和时间中(能量守恒)决定这些集中点的行为的规律是同引力的规律联系在一起的。最小作用原理本身就意味着没有场的作用时,质点将在欧氏空间的测地线上,也就是在直线上运动。在一般情况下,即存在场的作用时将沿着具有某个曲率的曲面上的测地线运动。
迄今为止根据引力场方程推出运动方程(要是就宏观物理而论)既是从最根本上排除了力,同时也是对古典物理学原始抽象的最根本的限制条件。倘若我们研究了引力场的相对论(非线性)方程,并且从它推出运动方程,这就意味着不再把力当成是外加的,给定的,所论问题终极的实质。现在运用恩格斯的术语来说:力可以看作是运动的主动的或是被动的方面。[26]现在所谓运动物体和场的相互作用,这种用抽象的形式也消除不了的相互作用,就像古典物理学所做的那样使方程具有线性的特征。
上述情况并不完全是指赫兹而言。力不是用动理学表象所取代而是改变了它自身的意义,力的概念和承受力的作用的物体的概念获得另外的特征。对力的概念的这种变更是同对原始抽象的限制联系在一起的。这就是并不把质点看成是以绝对的形式区别于包围它并且又在其中运动的介质的某种东西,而把质点看成是位于实在的物理介质(引力场)的时空中的奇点。不过相对论的宏观特征却使自身同一的粒子的观念失去加以修正的可能。
我们现在分析一下由于赫兹试图从力学中排除力而提出的最短距离原理。在此之前让我们先返回到与这种尝试无关的变分原理。当然,这并不是返回它的形式化的发展过程,而是返回到填充新的物理内容的拉格朗日,哈米顿,雅考毕的形式的结构。只是在新的实验事实的影响下才能发生用新的物理内容去充实形式化的原理。
在十九世纪证实了代入到哈米顿原理公式中的量只能由实验所确定。最小作用原理在其发展过程中不必引入实验事实就能极为具体地指出我们用于研究客观的物理数量关系的数列之特性,但不能指出这种数量关系本身的特性。然而最小作用原理则以不变的形式表征出客观的物理关系。这一情况不仅决定了这一原理在十九世纪物理学中的意义,而且也决定了它在近代物理中的命运。对其内容不必作出什么新的物理假设就可以把最小作用量原理以哈米顿公式的形式运用于相对论物理。相对论使变分原理的一个重要的,反复讨论多次的一个方面的问题得到彻底的阐明。哈米顿公式中引入的作用量(动能与势能之差并对时间积分)和拉格朗日的作用量(动能对时间的积分)不同,在从一个惯性系变到另一惯性系时前者是不变的。换言之,前者对洛仑兹变换是不变的。这就表现出哈米顿作用的四维本质。四维时空的“距离”和三维的纯空间的距离不同,它是洛仑兹变换下的不变量。表征质点或质点系在某一时刻的量是四维客体在三维空间之投影,其变化只取决于四维世界里空间截面的选择。表征系统在某一有限时间间隔内行为的量在一定条件下可能与这种选择无关。如果根据在一段不仅包括过去也可以包括末来的有限的时间间隔内(例如根据系统在11点到下午1点系统的行为决定系统在中午的状态)系统的行为决定系统在某一时刻的状态,那么这就毫无目的论可言了。这个问题原则上同另一问题没有区别,这就是说空间某点的现象由空间中一个在它前面,一个在它后面的两个点的现象所决定。在相对论中,时间空间是平等的,这就取消了曾经在最小作用原理的历史中起过重要作用的,所谓“有目的起作用的自然界”这一问题。为了算出系统的作用量,必须对包容系统且为物体所填充的空间和时间进行积分。这时我们就得到了从一个惯性系变到另一个惯性系时不变的四维量了。根据一些类似的情况普朗克指出,假定对一切四维宇宙坐标是对称的最小作用原理(对时间的积分并不能推出时间坐标,因为哈米顿作用量关于洛仑兹变换是不变的)可以成为核心的原理,这个原理以三个动量的守恒定律投影于空间之中,而投影在时间中则是能量守恒定律。[27]
这样,相对论运用时空事件的四维世界把最小作用量原理解释为能够从可能的世界线中挑选出实际的世界线的原理。在这种情况下相对论并没有给最小作用原理添加进新的物理内容。这种物理内容可以为量子物理所引入。只有作出某种把相对论和微观世界联系在一起的解释的情况下,根据更为一般的设想,相对论或许有“推出”最小作用原理的可能。在建立广义相对论时爱因斯坦用过最小作用原理。此时作用量的概念得到某些新的解释。如所周知,在决定空间和时间的曲率时借助于四个恒等式,并且力求排除表征空间时间特性但不表征曲率的多余的参量。这些恒等式按其物理意义而言表示不同坐标系中空间和时间曲率的同一性,曲率张量取决于能量冲量张量。在研究此问题时,爱因斯坦指出,上述四个恒等式有物理意义,也就是具有守恒定律的意义,并且表示了空间时间的特性。然而,现在当我们谈能量冲量张量时,空间的首要特性,即其均匀性对应于冲量分量守恒;而时间的均匀性对应于能量守恒。这样,守恒定律就对应于曲率张量之间恒等的数量关系,作为与这种或那种坐标表示无关的物理特性的曲率对应于作用量。爱丁顿提出在广义相对论中对作用量这一概念意义的极为精细、深刻的说法。他指出:对时空连续统而言,作用量扮演着类似于能量在空间关系上所扮演的角色。在四维世界里,作用量是曲率的量度,即决定质点运动的四维连续统的基本特性的量度。我们顺便指出:在叙述魏尔的统一场论时爱丁顿曾顺带提到对作用量的一种很有益的解释。爱丁顿说,可能作用量就是概率的函数,然而当把一些概率连乘,则作用量就相加,从而作用量可以认为是概率的对数。由于概率的对数是负数,所以作用量就要看成是概率的对数再加上负号,此时最小作用原理则表示实际实现的运动的最大概率。
在现代量子力学中最小作用量原理起着重要作用。不但如此,对于作用量概念的思考也激起对现存理论进行总结的尝试。表征微观世界之基本量,即作用量子和引入到宏观力学的基本数量关系中的量,即由能量按时间积分,这两个量的量纲一致,促使近代理论家在一系列设想上尽管没有引出什么具体的物理理论,但是却引出一些看来是很有前途的物理理论。
下面讲一下罗素的某些看法。[28]根据质量和能量的相对论的数量关系,罗素推出把质量和时间之积当成作用量的可能性。但是,引力质量还有与其相等的惯性质量可以由距离代表,这时作用量就是长度和时间的乘积了。用这种观点来看待普朗克常量,罗素说:要是把作用量取作物理学的基本概念,我们或许能建立起来全是原子论的,极适于检验的物理学。
罗素接着指出:相对论中时间空间间隔的不变性和作用量的意义(即在微观世界中的作用量)之间的联系是意味深长的。与上述类似的一些设想并不能引起物理知识的实际的进展,不过却很值得提出来,因为此后推广量子力学时要用作用量来表征近代物理的特征和风格。
从历史的观点应着重指出,发现作用量的不连续性表明哈米顿原理发展到一个新的阶段。哈米顿的最小作用原理公式是同光学力类比紧密地联系在一起的。然而十九世纪这种类比只能引起把连续介质中波动规律和离散物体运动统一在一起的一些不明确的设想。相反,在廿世纪以普朗克的伟大发现为开端的物理学,光学力学类比已然成为物理学中起关键性作用的观念。哈米顿曾经讲过等作用量的曲面,并且在不涉及周期过程的情况下,也研究过在此曲面上的运动。和等相位面类比本身遇到了本质上的困难,光学力学类比要求在所谓波动的公式中角度的余弦是一无量纲的量,为此必须要使作用量除以某个和它有相同量纲的量,这个量由普朗克引入到物理学之中,在此之后德布罗意就能对波写出下式:
此式中余弦就有物理意义了。光学力学类比使德布罗意有可能对于波尔的量子条件做出合理的解释,同时也使最小作用量原理和费马的光学原理之间所进行的多次类比具有物理意义。
在量子力学的发展中,作用量的不连续性不以其最初的假定方式保持下来。这种不连续性使解释量子力学的数量关系成为可能,但却没有去找这种解释。这样,不连续性就以终极概念的身份出现了。作用量不连续在日后推广为相对论的量子论中可以得到因果性的解释。看来这种推广的尝试对作用量概念本身带来某些新的认识,就像时空网格数的概念那样,用普朗克常数去除作用量的表象没有被排除,嬗变过程就在此网格中发生,在宏观的近似中网格可以作为自身同一的基本粒子的世界线而加以研究。此时世界线的概率就同爱丁顿所说的那种数量关系的作用量联系在一起,于是最小作用量原理就成为最大概率原理。
 
 
注释: 
1.Л.С.Полак. Варационные принципы механики,их развисии и некоторые применения в физике(в печати).Дальнейшее изложение истории вариционных принципов опирается на эту работу.
2.Leibniz.Mathematische Schriften. Herausg.v.Gerhardt,t.Ⅱ,Bd.Ⅱ1860,S.345-366.
3.Leibniz.Acta Eroditorum.1751,t.Ⅱ,S.176
4.Эта книга издана в русском переводе в 1934 г.(ГТТИ).
5.马克斯. 《数学手稿》 人民出版社 147页         --译者
6.Л.С.Полак.Вариационные принципы механики,их развитие и некоторое примение в физике.
7.Л.С.Полак. Вариационные принципы,гл.Ⅲ.
8.Hamilton. On a general method of Expressing of the Paths of light and of the Planet by the coefficients of a Caracteristics Functions.Math.Pap.,v.I,p.314.
9.Whittaker.Analytische Dynamik der Punkte und starren Korper. Berlin,1924,S.323.
10.Л.С.Полак.Вариационные принципы,гл.Ⅲ
11. 雅考毕.
12.Якоби.Лекции по динамике.М.--Л.,1936,стр.44.
13.[]M.Ostrogradski.Memoire sur les equations,differentielles relatives aau problemes isoperimetres. Mem.d. l'Acad.d.Sc.,St.Petersb.,1850,p.385-517.[e上有撇]
14.Lie Sophus 1842-1899 挪威数学家
15.М.Планк.Физические очерки.M., 1925,стр.95.
16.К.Маркс и Ф.Энгельс.Соч.,т.ⅩⅣ,стр.639.
17.城邦(Boiotia)原指迈锡尼时代之一种政权组织形式——译者
18.这一原理在许良英译《物理学的基础》(商务印书馆 1964 第一版,137页)中译为‘最少约束原理’。本书作者未用约束(связь)这一提法而用拘束(прнуждение)。我认为作者的提法是恰当的,约束是条件,拘束是此条件对系统的作用。——译者
19.Русск.пер.статьи Гаусс в примечании к 《Аналитической механике》 Лагранжа. T.Ⅱ.М.-Л.,1950,стр.412.
20.Ф.Клейн Лекции о развитии математики в ⅩⅨ столетии М.-Л.,1937, cтр.61;А.С.Чеботарев.Способ наименьших квадратов с основами теории вероятностей.М.,1936;Н.И.Идельсон. Способ наименьших квадратов и теория математической обработки наблюдений.М.,1947.
21.《Аналитическаямеханика》Лагранж(см.сноку на стр.62).
22.H.Hertz.Die Prinzipien der Mechanik in Zusammenhange dargestellt.Gesam.Werke,Bd.3,Lpz.,1910
23.Die Prinzipien der Mechanik.Gesam. Werke,Bd.3.S.17.
24.同上书.S.30.
25.同上.
26.Ф.Энгльс Диалектика природы. М.,1955 стр.225.
27.М.Планк Физические очерки.М.,1925,стр.95-96.
28.同上书.стр.50.
29.B.Russel.The analysis of Matter.1927,p.342.
 


怎么由运动方程导出拉格朗日量?


k1a2

来自: k1a2(但曾相见便相知,相见何如不见时) 2011-03-28 22:29:49

8人 喜欢
  • [已注销] 2011-03-29 00:53:53

    变分后微分,再积分~
  • [已注销] 2011-03-29 01:00:41

    实际上就是最小作量原理的普适性导致了LZ所说的“碰巧”及“直接”……
  • [已注销]

    [已注销] 2011-03-29 10:41:27

    确实就是猜的,不过是在几个对称性的框架下去猜
  • cmp

    cmp (const void*, const void*) 2011-03-29 10:58:17

    Lorentz不变性,只能长某些样子。可以看看朗道经典场论前面几章。
  • k1a2

    k1a2 (但曾相见便相知,相见何如不见时) 2011-03-30 14:28:25

    变分后微分,再积分~
    --
    详细一下??

    re后两位:
    如果前提是你不知道这种运动的对称性呢?比方说由KdV方程求拉格朗日量.

    更普遍的问题是,是否对于每一种运动,都必然存在这种运动的拉格朗日量?
  • Everett

    Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2011-03-30 14:35:49

    更普遍的问题是,是否对于每一种运动,都必然存在这种运动的拉格朗日量?

    是的。这是物理学的基本信仰之一。准确地说是任何运动都有作用量。
  • k1a2

    k1a2 (但曾相见便相知,相见何如不见时) 2011-03-30 15:06:20

    有没有先辈给出过存在性证明?我对此相当怀疑,因为从逆向看,任意给出的"拉格朗日量",比如说L=x+v,是不一定都存在对应的运动的.
  • 梦游大使

    梦游大使 (通宵觉主特困生) 2011-03-30 15:11:42

    ……
  • Everett

    Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2011-03-30 15:29:33

    物理没有公理系统,只能信仰不能证明。
    任何的Lagrangian 都支配一种运动,只不过没有极值的Lagrangian 没有经典运动轨迹罢了,但是在量子力学意义上还是可以的。 比如 L= x+v 就属于没有经典运动轨迹的运动。
  • k1a2

    k1a2 (但曾相见便相知,相见何如不见时) 2011-03-30 22:50:35

    我是个怀疑论者.Lagrange方程的其中一个条件,在动力学中x与dx/dt独立.什么叫"独立"?既然可以在Lagrange中可以无限制地添加x,dx/dt,d2x/dt2..,那是否就可以往里面添加同样"动力学学独立"的(d/dt)^(1/2)x之类的东西?Lagrange方程真的可以包含一切吗?

    虽然是个初学者,但我也知道在历史上曾经有过各类微分方程解的存在性,唯一性(这点Lagrange量不满足),和稳定性的讨论.于是我想也应该有微分方程所对应的变分形式存在性类似的讨论吧?还有"形式一致性"(这个词是我自创的...实在不知道怎么表达),即保证整数阶的微分方程所对应的变分形式中不会出现分数阶的项.
  • Everett

    Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2011-03-31 14:14:37

    嗯,我当时看Landau力学的时候就觉得速度和位移独立是不可理喻的。如果给定位移关于时间的函数,速度、加速度以及更高阶时间导数不是都确定了吗,为什么说它们是独立的呢?好吧,我们先听从Landau先生的教诲,那么马上要问的问题是,那加速度什么的是不是也可以放到Lagrangian里面去呢?我想这也是楼主的困惑。

    正当我困惑着呢,Landau先生接下去写到:位移和速度已经完备动力学系统的自由度,加速度和更高级导数并不独立于位移和速度,因此Lagrangian只需作为位移和速度的函数,而不需要进一步包含加速度等自变量了。看到这里我顿时就崩溃了,同时开始崇拜Landau先生居然可以在写书的时候就知道读者要问的问题。接下来有一段话来分析支持这个论点,大意是知道位移和速度就可以预测下一个时刻的位移,如此就可以得到轨迹,加速度属于冗余信息。

    后来我才知道,正是因为我们基于Lagrangian出发考虑,才会出现独立性疑难。因为如果位移和速度不独立,我们就不能理解什么叫Lagrangian对速度求偏导(而保持位移不变)。但是,如果我们直接从作用量入手,并且将作用量理解成位移的泛函,就可以避免这个问题。所谓泛函就是函数的函数。位移关于时间的变化是一个函数 x(t),作用量泛函的作用就是把这个函数映射到一个实数上去。这时候,位移就是作用量泛函唯一的自变量,速度、加速度等等都由位移函数决定,不是独立的。求运动方程的时候只要对作用量变分,并令结果等于0就可以了。在变分的过程中,加速度什么的都会自动跑出来,就没有什么偏导不偏导的烦恼了。
  • Tabris

    Tabris (人生的意义就是“等待与希望”) 2011-03-31 17:33:29

    不仅如E大说的这样,为满足相对性原理,也必须使得L中坐标与速度独立,否则会出现绝对坐标系
  • cmp

    cmp (const void*, const void*) 2011-03-31 17:56:48

    @E大

    我去翻了一下Landau,他说的意思ms是,给定位置和速度的初值就能确定运动轨迹,这是从经验得到的;还说运动方程是广义坐标的二阶微分方程。

    我觉得后一句是重点,因为如果运动方程是广义坐标的,比如说,三阶微分方程,那么运动轨迹就还需要第三个积分常数,比如说,我们要给定加速度的初值。因此,位置和速度的初值决定运动轨迹,不是一个逻辑事实,而应该是一个实验结果。

    还有关于那个独立性,我想问一下独立的数学定义是什么呢?

    @Tabris

    能再写几句么?没有太明白。
  • 发情的章鱼喵

    发情的章鱼喵 (=L=~=M= | 下个月再用) 2011-03-31 21:38:12

    @Tabris

    能再写几句么?没有太明白。+1
  • 卡卡刚

    卡卡刚 (Know Thyself) 2011-03-31 22:27:17

    @cmp0xff

    “运动方程是广义坐标的二阶微分方程”这个貌似就是从“位移和速度是Lagrangian的独立变量”这一命题推出来的吧,再用这个去解释就有点循环论证了。

    @E大

    按E大最后的说法岂不Landau先生的书里说错了?求解释。。。

    @Tabris

    能再写几句么?没有太明白。+2
  • cmp

    cmp (const void*, const void*) 2011-03-31 22:46:41

    @卡卡刚

    恩确实循环论证了。那么我就退回去,坚持“位移和速度是L量的独立变量”是实验事实。求拍。
  • 卡卡刚

    卡卡刚 (Know Thyself) 2011-03-31 22:49:31

    @cmp0xff

    乖孩子,不拍你了~
  • 眼鏡大俠

    眼鏡大俠 (不要再消磨时光了!) 2011-03-31 22:55:33

    2011-03-31 14:14:37 Everett
    11楼

    嗯,我当时看Landau力学的时候就觉得速度和位移独立是不可理喻的。如果给定位移关于时间的函数,速度、加速度以及更高阶时间导数不是都确定了吗,为什么说它们是独立的呢?好吧,我们先听从Landau先生的教诲,那么马上要问的问题是,那加速度什么的是不是也可以放到Lagrangian里面去呢?我想这也是楼主的困惑。

    正当我困惑着呢,Landau先生接下去写到:位移和速度已经完备动力学系统的自由度,加速度和更高级导数并不独立于位移和速度,因此Lagrangian只需作为位移和速度的函数,而不需要进一步包含加速度等自变量了。看到这里我顿时就崩溃了,同时开始崇拜Landau先生居然可以在写书的时候就知道读者要问的问题。接下来有一段话来分析支持这个论点,大意是知道位移和速度就可以预测下一个时刻的位移,如此就可以得到轨迹,加速度属于冗余信息。

    后来我才知道,正是因为我们基于Lagrangian出发考虑,才会出现独立性疑难。因为如果位移和速度不独立,我们就不能理解什么叫Lagrangian对速度求偏导(而保持位移不变)。但是,如果我们直接从作用量入手,并且将作用量理解成位移的泛函,就可以避免这个问题。所谓泛函就是函数的函数。位移关于时间的变化是一个函数 x(t),作用量泛函的作用就是把这个函数映射到一个实数上去。这时候,位移就是作用量泛函唯一的自变量,速度、加速度等等都由位移函数决定,不是独立的。求运动方程的时候只要对作用量变分,并令结果等于0就可以了。在变分的过程中,加速度什么的都会自动跑出来,就没有什么偏导不偏导的烦恼了。
    ---------------------------------------
    E大的11樓讓我頓時有了看朗道顯示著作的興趣
  • [已注销] 2011-04-01 00:33:37

    若抛开实际需要不看,上在拉氏力学里引入高阶导数,并作为独立动力学参量的尝试已经有过不少了。
    幸好自然界总是这么简单,或者说人们喜欢简单。
    如果是有效拉氏量,出现高阶导数并不奇怪。所以如果你是人类又观察到一种包含时间高阶导数的动力学规律,一定会像用均轮和本轮描述行星运动那样还原为一个与当时的认识水平相比较相称的“简单”理论,因为人认识任何事物时无不是这样做的。
  • Tabris

    Tabris (人生的意义就是“等待与希望”) 2011-04-01 11:43:27

    如果L的形式包含坐标,或坐标与速度不独立,则对于L的选取依赖参照,而这在相对性原理上是冲突的,因为相对性原理要求L函数不论在哪个惯性系下都应当是形式相同的。
    所以一般情况下的L函数必须满足伽利略变换(经典),或Lorentz变换(狭义相对论)下的不变形,可由此判别,除非空间的各向同性和均一性被破坏(如电场存在时),否则L函数不应含有坐标
  • 点阵 (Je veux seulement l'oublier) 2011-04-01 11:52:13

    窃以为找lagrangian的目的就是求出运动方程

    用运动方程找lagrangian纯属本末倒置

    方法么,用运动方程和lagrange方程比较,然后积分,会带不定常数的
  • 留空

    留空 2011-04-02 02:32:03

    物理学的一个基本信仰是:运动方程中只应出现状态和状态的变化率。对经典力学问题而言,这就是说运动方程中最多出现速度的一阶导数(位置的二阶导数),由于从拉氏量导出运动方程时会对t求一次导,因此我们一般假定拉氏量中只有速度而没有加速度。

    有趣的是马尔契夫的书上曾经给出一个一维势场,其中质点运动在给定速度为位置的情况下有时并不唯一。当然我们可以认为这种势场并不存在。

    2011-04-01 11:52:13 点阵 窃以为找lagrangian的目的就是求出运动方程
    在规范场论出现之前,似乎从运动方程找拉氏量更多。
  • 点阵 (Je veux seulement l'oublier) 2011-04-02 11:00:15

    回楼上,从没听说过这样的信仰,照你这样说,Lagrange方程不能导出Newton方程咯。
    物理学的基本信仰是对称性和守恒律,一种对称性对应一种守恒量。不守恒的量严格来说应该驱逐出物理学。由对称性给出lagrangian,由lagrangian给出运动方程。
    再问楼上,为什么要找lagrangian?
  • 点阵 (Je veux seulement l'oublier) 2011-04-02 11:08:30

    至于为什么只用广义位置和广义速度,因为给出体系的所有广义位置和广义速度,体系的状态就确定了,相当于相空间一个点
  • cmp

    cmp (const void*, const void*) 2011-04-02 12:14:15

    @点阵

    讨论的就是为什么给出体系的所有广义位置和广义速度,体系的状态就确定了
  • 点阵 (Je veux seulement l'oublier) 2011-04-02 12:35:55

    因为这已经给出了所有的信息,就相当于微分方程和边界条件或初始条件

    从自由度角度讲,对一维单粒子只要x(t),两个自由度

    给x,x的导数也是两个自由度
  • Tabris

    Tabris (人生的意义就是“等待与希望”) 2011-04-02 13:45:31

    物理体系,给出速度就已经确定状态了,轨迹也确定了(这个时候确定的是轨迹族),如果给出初始速度就唯一确定轨迹了,这是常微分方程的存在与唯一性定理保证的。

    但相对性原理不需要给出一个初始位置,只需要相对位置就可以了(这是对于多粒子体系,单粒子体系连初始位置都不需要给定)

    不过说到体系的状态,这个含义可能会很广, 比如带电或不带电的状态肯定不同,但在没有电磁场的情况下,他们的相轨迹可以相同,所以这里的状态包含了可观察的状态,或者说是你想要观察的状态,那么对于纯粹的运动,位移是唯一关注的量,所以确定位移速度与位移初始就成为一个完全集,如果你还要考虑能量,那么质量也必然应该引入,或者是把速度换成是动量。

    到了量子状态,这个概念就会更加明确(力学量完全)

    不知道是否解决了 cmp0xff 同学的疑惑
  • 卡卡刚

    卡卡刚 (Know Thyself) 2011-04-02 22:23:36

    也许可以这样想:
    有了广义坐标q(t)和广义速度v(t)就可以推出加速度等其他参量,比如说加速度a(t)=(vdv)/dq
  • 留空

    留空 2011-04-03 20:45:06

    2011-04-02 11:00:15 点阵 回楼上,从没听说过这样的信仰,照你这样说,Lagrange方程不能导出Newton方程咯。
    物理学的基本信仰是对称性和守恒律,一种对称性对应一种守恒量。不守恒的量严格来说应该驱逐出物理学。由对称性给出lagrangian,由lagrangian给出运动方程。
    再问楼上,为什么要找lagrangian?

    量子化呗。

    牛顿力学中描述运动状态既需要位置,也需要速度。因此牛顿第二定律左边可以出现状态量(r,v),右边可以出现状态的时间变化率(v,a)。实际上物理学没有一个单一信仰,你所说的以对称性确定Lagrangian的方法在场论中常用,但是就像Weinberg I里的解释:对一个string theoretist来说,人们先需要观察到弦的一种振动模式,再由此导出满足规范对称性的effective field theory。

  • 点阵 (Je veux seulement l'oublier) 2011-04-05 11:07:04

    先不论量子化是不是找lagrangian的根本出发点,显然量子化是一条理由,但不充分。Hamiltonian也能量子化,而且守恒,况且量子化方法也不只这一种。

    你定义的状态量本身就有问题,速度是状态量,加速度就是状态变化率了?一阶导数是状态量,高阶就不是了。“由于从拉氏量导出运动方程时会对t求一次导,因此我们一般假定拉氏量中只有速度而没有加速度。 ”

    这么说导出的运动方程只能含有不超过2阶的导数。但在阻尼力的问题中,方程含高阶导数。所以我说照你的意思,lagrange方程导不出经典力学。


    newton方程分左右,我也是第一次听说,求出处。
  • 孤立奇点

    孤立奇点 2011-04-05 14:17:00

    只看了两天拉格朗日方程的很惶恐的说道:
    那个~~~我似乎觉得在牛顿动力学方程里是不会出现三阶或以上的高阶微分方程吧。那时候,世界没那么复杂,给一个“力”的概念就搞定全部。力就是位置对时间的二阶导数。
    然后,拉格朗日函数给定后,世界就定了。假如体系里一个约束都没有,运动状态也是定下来的,至少拉格朗日等人时这样看的。我个人觉得这很符合直觉,就是,如果我啥都不知道,那我知道啥?“啥都不知道”也是一种状态。
    当我们确定物理景观里的某种变化,(我们确实认为在变,但不是任意变),这时构成我们关心的物理运动。这个“不任意”,就是我们明确知道,他受到了某种约束。当体系受到一定约束后,他就只能做某一类运动了。
    拉格朗日关注的是在那一类运动中,在所谓“主动力”情况下,构成的运动,他认为这就是我们见到的运动。若跟你见到的不一样的话,只能说明我们的约束没找齐,或主动力没找齐。所有经验和实验“都”表明,只要我们找的齐。拉格朗日方程就给的出来。若要从理论角度来证明,只要认为牛顿定律是正确的就行,可以证明拉格朗日动力学方程与牛顿动力学方程在数学上最后将给出相同的微分方程的解。(虚功原理等价于矢量受力平衡)+(达朗贝尔等效原理)使得拉格朗日的研究对象都是“平衡”的!而且和牛顿动力学方程构建的物理基础是一致的。拉格朗日还发现如果我们不是先知道“力”的情况,而是先知道体系“能”的情况,我们同样能得到体系运动情况。牛顿从来就不觉得“能”是必要的,“力”才是基础。但现在“能”也可以是基础了!
    关于为什么在拉格朗日函数里,广义速度是独立于广义坐标,那是因为那是拉格朗日函数,他是表征着体系的能量情况,体系的能量当然和体系的所谓动能,和所谓势能有关,而且,我们的世界在无约束情况下是可以有任意的动能和势能的,总不能说这样的势能就一定是那样的势能。虽然这是事实,但是在得到拉格朗日方程之后。所谓速度与位矢相对独立,是一个存在于逻辑里的情况,而不是某个物理事实。
    至于说到“加速度”这个东西,是没有的,因为一个显而易见的事实是,加速度是一种和力在数学上等价的东西。而现在“力”是没有的了。达朗贝尔原理,使得体系总是“平衡”。这种平衡,在牛顿看来是力的结果。但是拉格朗日认为,是拉格朗日函数,即体系能量的结果。
    若你告诉牛顿,这个体系“力”的情况,原则上他就懂得在逻辑上认识了这个运动以前或以后是怎样的,而且事实跟其思想一致。你你告诉拉格朗日体系能量的话,他也可以得到同样的运动结论。
    而最基本的是,他们都能看到的唯一东西是“运动”也是他们共同看到的事实。而事实是不为个人背后的思想而转移的。
    牛顿为啥不搞个加加速度呢?因为他不觉得世界上有一个这样的客观事实(独立于位置的)来支配这个情况。而人类有能力“找到”他所谓的“力”,然后就好了。人类同样能“找到”拉格朗日函数。构造“力”就不可避免要用到加速度的概念,但是构造体系动能和势能却不需要。
    大概就这样,我的初步理解~~~多谢指正。

  • 孤立奇点

    孤立奇点 2011-04-05 14:29:57

    糟糕,发完之后看得觉得瘆的慌~~~一批错误和漏洞~~~
    问个问题,拉格朗日是随便造的么????为啥组长说L=v+x也是拉格朗日函数???
  • 善龍

    善龍 (吾心安处惟故宅) 2011-04-05 16:11:45

    说个这样的事情吧,或许对大家有帮助。
    你们看标准的场论书上都极少出现外力这个概念,但这个量在你们的讨论中有很重要的意义,因为牛顿力学说了,外力是速度改变的原因,甚至还定量的给出了外力是如何改变速度的(牛二)。

    但牛顿力学没有解释外力是如何来的,这样就有两种不同的看法,一种是外力是外部因素,于是我们可以建立起一整套拉格朗日力学,‘前人之述备矣’;当然还有不服气的人,他们把研究的系统扩充到将外力也包含进来,作为研究的对象,这样问题就难缠了,他们试图去解释力本身是如何随时间空间改变的,以及力的改变是如何随时间改变的....当然这就是你们说的三次及高次导。

    似乎这是一个子子孙孙无穷尽矣的难题,让我们回到较为简单的问题:什么是力?在牛顿那个时代,有一个力是理解得比较清楚的,引力,至少比弹簧振子的弹力用胡克定律来描述这种东西要深刻得多,万有引力理论是一个很强大的理论,你看,它把这些子子孙孙无穷尽矣的难题全解决了(我是说它的各阶导数都可以明显的写出来),如果我们的世界只有万有引力就好了,但事实上没有这么简单:很显然,这个理论甚至无法解释弹力和摩擦力这些司空见惯的力。

    这时候,我们不得不提库伦,安培,韦伯,法拉第这一帮人,他们研究了除了引力之外日常生活中可以接触到的力:电力和磁力。最后,集大成者,麦克斯韦将这两种力统一起来。这些理论,都能把那些高阶导数什么的一次性解决,不留下尾巴,比如说库伦定律就讲清楚了两个带电球之间的力作为时间空间的函数是平法反比定律。

    在自牛顿开始的经典物理学(我主要是指微积分这个可以定量分析物理的工具出现之后)发展了200多年之后,我们生活中可以看到的力,引力和电磁力都很漂亮的被解决了,上帝好像也并不比我们强多少么,你看本来难缠的无穷阶导一次性就解决了。但故事还没有结束,实际上才刚刚开始,按照标准的书上的说法,飘来三朵乌云,革命了。
  • 留空

    留空 2011-04-06 19:07:51

    正则量子化都是从拉氏量出发,这是因为就算你能找到体系的能量表达式,没有Lagrangian你也找不到正则动量,于是就无法对其赋予正则对易关系。此外,如果不知道Lagrangian我们也无法知道体系有什么约束。

    对经典力学来说,速度显然是状态量之一,表出系统能量、动量都需要速度,你总不能说这些都不是状态量吧。但加速度就不是状态量,也没有任何其它状态量需要加速度才能表出。

    “但在阻尼力的问题中,方程含高阶导数。所以我说照你的意思,lagrange方程导不出经典力学。”

    这我真没听说过,你说的是辐射阻尼?辐射阻尼不能严格看做一个力,这个我们都知道。更一般的说,假设某种力与质点速度的导数(即位矢高阶导数)有关,那么这种非保守力就可以质点自动加速,这将导致能量不守恒——这也是把辐射阻尼看做真实力时的困难之一。

  • 善龍

    善龍 (吾心安处惟故宅) 2011-04-06 19:49:48

    @留空:
    在量子力学里Hamiltonian比Lagrangian更基本,这是毋庸置疑的。还有,对易关系比这两个更基本,信不信,我甚至不需要Hamiltonian和Lagrangian,就能整出正则对易关系来?很简单,对易关系是假设的,可以从正则对易关系开始假设,也可以从其他地方开始假设,比如说,对称性,你不觉得奇怪么,动量算符正好是位置平移操作的生成元。
  • 善龍

    善龍 (吾心安处惟故宅) 2011-04-06 19:52:18

    我说的是正则量子化。
  • 留空

    留空 2011-04-06 20:47:24

    用对称性当然是可以的,但仅限于非相对论量子力学。在场论里似乎并没有把共轭场算符看做场平移操作生成元的,因为我们实际上也基本不处理场算符的本征态。而在通常情况下,因为位置算符和动量算符的共轭性我们都知道,而单粒子Hamiltonian又常可以用p,q表出,确实可以直接从系统能量表达式过渡到Hamiltonian。但一般情况下这是不可能的,比如场的正则量子化中,能量表达式是用场量(如E,B)表达的,如果没有Lagrangian量我们就不知道如何用场量表出共轭场算符,因此就无法做正则量子化。更有甚者,如果我们要处理的体系具有singular Lagrangian(比如电磁场),那么从Lagrangian到Hamiltonian的过渡还能给出系统约束,而系统的约束条件直接影响了系统的规范不变性和对Poisson括号的修正,因此就算我猜出了共轭场算符的形式也无法直接进行正则量子化。

    以上这些内容在Dirac的Lectures on Quantum Mechanics(这是一本专论约束体系正则量子化的书),和Weinberg I中都有详细论述。两本书都很明确地指出:正则量子化的出发点是Lagrangian
  • 善龍

    善龍 (吾心安处惟故宅) 2011-04-07 00:03:40

    呃,这样呀,谢谢先。然后呢,在凝聚态里好像更多的是认为,Hamiltonian比Lagrangian更基本。
  • 善龍

    善龍 (吾心安处惟故宅) 2011-04-07 00:11:23

    虽然我现在弄不出来,但我还是坚信这个美丽的梦想:仅仅从对称性分析就能实现基本场量的量子化。
  • 留空

    留空 2011-04-07 16:47:07

    2011-04-07 00:03:40 善龍 (子集) 呃,这样呀,谢谢先。然后呢,在凝聚态里好像更多的是认为,Hamiltonian比Lagrangian更基本。

    客气。在凝聚态里我就不太清楚了,也许是凝聚态里物理考虑更明显,不需要做“约束体系量子化”这样比较纠结的事情吧。。。(这个确实很纠结)


Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2009-01-24 22:35:35

我来说一个正定矩阵在物理上的应用。

物理上有个定理叫做最小作用量原理,这是力学的基础。这个定理说,粒子总是沿着作用量极小的那条路径运动的。

作用量说白了就是粒子的动能和势能的差。大家都知道动能正比于速度的平方。但是你考虑粒子未必只有一个独立的速度分量,特别是那些由许多粒子构成的系统,可能会有成千上万个速度。所以一般来说,动能是速度的二次型。也就是说,可以写成中间一个矩阵,速度矢量夹在两边。中间那个矩阵地位与质量相当,有时就称为质量矩阵。

好了,现在我们有一个很重要的要求,就是质量矩阵必须是正定的。
为什么呢?因为正定矩阵的二次型也是正定的,也就是说最少最少也要是0.
作用量要极小化,如果质量矩阵不是正定的,那么动能就可以是负的。这样我们如果使某些速度无限地增大,动能就越来越负,作用量就没有底了,怎么极小化呢。所以质量矩阵的正定性是能够实现作用量极小的要求,一切物理上合理的系统都应该具有正定的质量矩阵。
  • Hwa:欧迪在哪儿?

    Hwa:欧迪在哪儿? 2008-12-22 19:52:51

    讨论线代的人好多啊
  • Hwa:欧迪在哪儿?

    Hwa:欧迪在哪儿? 2008-12-22 19:53:37

    特征值都大于零,多好看啊
  • whale|抛砖引玉的砖

    whale|抛砖引玉的砖 2008-12-22 19:53:49

    是啊
    我的悟性比较差,如果大家都来讨论的话,就会比较清楚点
  • Hwa:欧迪在哪儿?

    Hwa:欧迪在哪儿? 2008-12-22 19:56:22

    没想过为什么要发明,但是满秩的东西就是很好嘛,算起来也很好算,看着就爽
  • 壶碟会上探花郎

    壶碟会上探花郎 (……) 2008-12-23 14:17:32

    为什么?其实矩阵这套东西,就是先发明出来,然后才发现有用的
  • whale|抛砖引玉的砖

    whale|抛砖引玉的砖 2008-12-26 13:51:53

    谢谢ls的关注,我想知道这样做的目的和意义是什么
  • arinya

    arinya 2008-12-26 14:56:44

    如果我们认为正定二次型是椭圆,那么这种说法不知道是否能赋予你意义?
  • arinya

    arinya 2008-12-26 14:58:49

    楼主很有想法,希望能将这些问题整理一个答案出来。本来我有一点笔记,今天找了一下,想起来前几天认为可能没有用,将它删除了。
    后悔中……
  • Being-Human

    Being-Human 2008-12-27 15:20:07

    唉,不懂。

    想当初研究一篇论文,其中的矩阵运算,看了一年多愣是没看懂。从此对自己有了更实际的评价。

    含泪奔过
  • 敛秦

    敛秦 (彟龘瞾) 2008-12-27 15:27:03

    一个欧氏空间的本质?判定后,可以就对矩阵作其它分析,结果就能给出此空间中的规律,并且可以信任结果是此空间内普适的?
  • 楚天舒

    楚天舒 2009-01-22 03:56:26

    特征值反映了矩阵的很多本质东西,
    正定矩阵在计算上有很多很好的性质。
  • newone

    newone (认真是美德) 2009-01-24 00:07:46

    物理上有应用

    数学上就按定义理解,正定矩阵,就是正定的矩阵,很清楚么~~~
  • eulen

    eulen (好吧我承認哥是個重口味怪蜀黍) 2009-01-24 22:11:14

    LS的,不对称咋定义的正定?
  • Everett

    Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2009-01-24 22:35:35

    我来说一个正定矩阵在物理上的应用。

    物理上有个定理叫做最小作用量原理,这是力学的基础。这个定理说,粒子总是沿着作用量极小的那条路径运动的。

    作用量说白了就是粒子的动能和势能的差。大家都知道动能正比于速度的平方。但是你考虑粒子未必只有一个独立的速度分量,特别是那些由许多粒子构成的系统,可能会有成千上万个速度。所以一般来说,动能是速度的二次型。也就是说,可以写成中间一个矩阵,速度矢量夹在两边。中间那个矩阵地位与质量相当,有时就称为质量矩阵。

    好了,现在我们有一个很重要的要求,就是质量矩阵必须是正定的。
    为什么呢?因为正定矩阵的二次型也是正定的,也就是说最少最少也要是0.
    作用量要极小化,如果质量矩阵不是正定的,那么动能就可以是负的。这样我们如果使某些速度无限地增大,动能就越来越负,作用量就没有底了,怎么极小化呢。所以质量矩阵的正定性是能够实现作用量极小的要求,一切物理上合理的系统都应该具有正定的质量矩阵。
  • Everett

    Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2009-01-24 22:59:48

    嗯,还有一个例子,就是量子力学。

    量子力学的数学基础之一是Hilbert空间。Hilbert空间是一个内积空间。向量和自己的内积也是二次型,一般都是正定的。更装逼一点地说,就是Hilbert空间的度规是正定的。但是在相对论性量子力学里,我们发现Hilbert空间再也不能完备所有的波函数了,我们必须引入非定度规的线性向量空间。在非定的度规下,波函数和自己的内积可以是负的,整个量子力学的测量理论都要为此而改写。

    一个向量的模方还可以是负的?不要感到诧异,这有着非常重要的物理意义,这代表了反物质的出现。描写正常物质的波函数的模方是正的,而描写反物质的波函数的模方是负的。从物理上说,反物质的出现是一种狭义相对论的量子效应,而其数学基础与度规的正定性有着密切的关系。
  • 鸟枪换炮

    鸟枪换炮 (天子万年百姓花钱) 2009-01-24 23:02:28

    以后学了高维概率论就知道了,有些重要分布(e.g.正态分布)一般必须定义于正定矩阵,最次也得是非负定的。
  • [已注销] 2009-01-25 09:18:49

    这个就...ls还是把它当作线代习题证明一次吧.
  • eulen

    eulen (好吧我承認哥是個重口味怪蜀黍) 2009-01-25 17:49:04

    2009-01-25 01:08:47 瘦头陀|我在顺义有棵树 (北京)   2009-01-24 22:11:14 eulen≡猫头鹰枭|人在天津 (天津)   
      LS的,不对称咋定义的正定?
      
      嗯?我记得定义是说一个矩阵,对于任意非零向量,左右分别乘上向量的转置和向量本身,永远大于零,这就是正定了,不需要对称的。

    ---------------------------------
    我看到的定义是对称阵然后才分别左乘再右乘。。。。
  • 栋栋

    栋栋 2009-01-25 19:20:29

    平稳随机过程的自相关函数也是正定的
  • 楚天舒

    楚天舒 2009-01-25 23:46:31

    正定矩阵的重要性看来是在实践中发现discovered,而不是发明invented的。一切人为的东西都难免有斧凿的痕迹,只有上帝创造者乃自然天成。
  • 荒野大嫖客

    荒野大嫖客 (Je pense donc je suis!) 2009-12-20 15:59:46

    我建議從雙線性函數的角度來看,
    因為不論是二次型還是正交變換, 實際上都可以統一的理解到雙性性函數來, 而進一步的, 我們就會想到會不會和算子有關? 會不會有空間的理論有關, 那麼由此引出用特徵值來描繪一下:
    A正定 iff. 其每個特徵值均為正數!
    為什麼呢? 比如\lamda是特徵值, 那麼\alpha^{'}A\alpha=\alpha^{'}\lamda\alpha, 整理成\lamda的式子就得到了.
    好了, 再進一步, 我們又知道, 對於對稱矩陣而言, 一定正交相似於diag{\lamda_1,\cdots,\lamda_n}, 那麼對於正定矩陣呢?
    首先, 可以看到正定矩陣正交合同於diag{\lamda_1,\cdots,\lamda_n};
    然後, 再看看, for each k\ge2, 一定有A=B^k, 其中B為正定矩陣

    當然, 如果你還記得矩陣的QR分解, 那麼除了你先前明白的正定陣可以表為P^{'}P, P為可逆陣, 還可以進一步的發現正定陣可以表為R^{'}R, R為正線上三角陣

    至於說到應用, 別的不說, 就來談談比較兩個簡單的數學應用好了:
    1.分析裡講到的多元函數極佳法的原理;
    2.解析幾何對二次曲線的分類討論
    etc...

    如果你是念數學科的, 建議你多看看泛函方面的知識, 如果實在不行, 看看矩陣論之類的書應該也行
  • 楚天舒

    楚天舒 2009-12-21 09:23:51

    正定二次型的一个典型例子,隐形眼镜,其零点是唯一的。
    半正定的二次型的一个典型例子是鸭舌帽的帽舌,其零点是一条线。
    不定型的典型例子,工作中的护翼型卫生巾。护翼部分在零下,其他部分在零上。

    线性代数的理论在历史上发展的比较晚。而线性几何则很久了。
  • songtao

    songtao (初恋的感觉真好,哈哈~) 2009-12-21 11:33:46

    这个讨论我喜欢。
  • [已註銷]

    [已註銷] 2009-12-21 17:42:19

    2009-12-21 09:23:51 楚天舒 (Google on a surface)
    正定二次型的一个典型例子,隐形眼镜,其零点是唯一的。
    半正定的二次型的一个典型例子是鸭舌帽的帽舌,其零点是一条线。
    不定型的典型例子,工作中的护翼型卫生巾。护翼部分在零下,其他部分在零上。
    ------------------------------------------------------------------------------------------------------
    這個比較有趣。
  • whale|抛砖引玉的砖

    whale|抛砖引玉的砖 2009-12-22 19:21:12

    2009-12-21 09:23:51 楚天舒 (Google on a surface)
    正定二次型的一个典型例子,隐形眼镜,其零点是唯一的。
    半正定的二次型的一个典型例子是鸭舌帽的帽舌,其零点是一条线。
    不定型的典型例子,工作中的护翼型卫生巾。护翼部分在零下,其他部分在零上。
    ----------------
    good!
  • 王柯羅

    王柯羅 2013-12-08 23:17:23

    对多维函数的极大值和极小值的判断有用。
  • 牧城的格致传说

    牧城的格致传说 (客里似家家似寄) 2013-12-09 10:30:29

    @Everret, E大,“从物理上说,反物质的出现是一种狭义相对论的量子效应,而其数学基础与度规的正定性有着密切的关系。” 貌似闵氏度量是负定的。特征值的trace才是正定的。前者表明时空是不一样的,后者说明因果律只在小于或等于光速下适用。这个例子有点欠妥。

    正定矩阵其实物理上的地位还远不如幺正和厄米(厄米的exponential是幺正,或者说幺正的生成元是厄米,所以这俩焦不离孟)。其实正定矩阵本身就是厄米矩阵的一种,只不过其本征值都是正的实数。厄米矩阵的本征值是实数。因此类比数域的话,在矩阵中,正定矩阵相当于正实数,厄米矩阵相当于实数,而幺正就相当于复数了。所以一般学习的话都是先学正定矩阵,随后推广到厄米,再推广到幺正。
  • [已注销] 2013-12-09 11:39:12

    如果f(x,y)满足f(ax+by,z)=af(x,z)+bf(y,z),且f(x,y)=f(y,x)。就说f是对称双线性函数,

    事实上引入双线性函数是为了对点积进行抽象,你验证下点积是不是符合这两个性质?但是除此之外,点积还要满足f(x,x)>0,除非x=0,那么满足这个条件的对称双线性函数就叫做正定的。所以正定对称双线性的引入是为了在线性空间中引入度量成为所谓的欧氏空间。

    你要注意到,一个双线性函数,实际上完全由它在线性空间的基处的值决定,也就是f(bi,bj)的值决定了整个f(x,y)。自然我们可以把f(bi,bj)排成矩阵,那么这个矩阵就完全决定了这个双线性函数。

    正定对称双线性函数的矩阵,我们成为正定矩阵。

    这就是背后动机(一种理解)。

    您看看。

    正定阵就是对称双线性函数的矩阵。你知道这点就行了,要在线性空间上引入度量形成欧氏空间
  • 暴走的天气

    暴走的天气 (仅此而已。) 2013-12-09 19:23:42

    都讲了好高深 我粗俗的以为线代一本书都在讲解方程
  • PR

    PR 2013-12-11 22:17:37

    @Everret, E大,“从物理上说,反物质的出现是一种狭义相对论的量子效应,而其数学基础与度规的 @Everret, E大,“从物理上说,反物质的出现是一种狭义相对论的量子效应,而其数学基础与度规的正定性有着密切的关系。” 貌似闵氏度量是负定的。特征值的trace才是正定的。前者表明时空是不一样的,后者说明因果律只在小于或等于光速下适用。这个例子有点欠妥。 正定矩阵其实物理上的地位还远不如幺正和厄米(厄米的exponential是幺正,或者说幺正的生成元是厄米,所以这俩焦不离孟)。其实正定矩阵本身就是厄米矩阵的一种,只不过其本征值都是正的实数。厄米矩阵的本征值是实数。因此类比数域的话,在矩阵中,正定矩阵相当于正实数,厄米矩阵相当于实数,而幺正就相当于复数了。所以一般学习的话都是先学正定矩阵,随后推广到厄米,再推广到幺正。 ... 牧城的格致传说
    是的,一阶Hermitian矩阵其实就是实数,一阶正定阵就是正数,半正定就是非负数
  • 静听佩鸣

    静听佩鸣 2013-12-26 14:02:58

    xTAx > 0嘛,正定矩阵就是这么来的吧,是说左边的式子一定是正的。
  • 西巴拉

    西巴拉 (我还有青春,尚,可以疯狂。) 2014-08-11 14:33:15

    赞一个
  • Euler Gauss 2014-08-14 19:13:32

    建议你去读一下《高等几何》,或是有关射影几何的书籍,就会对正定矩阵乃至高代中的许多概念会有更形象、深刻的认识。^_^
  • purhyme

    purhyme 2014-12-09 18:56:40

    正定二次型的一个典型例子,隐形眼镜,其零点是唯一的。 半正定的二次型的一个典型例子是鸭舌帽 正定二次型的一个典型例子,隐形眼镜,其零点是唯一的。 半正定的二次型的一个典型例子是鸭舌帽的帽舌,其零点是一条线。 不定型的典型例子,工作中的护翼型卫生巾。护翼部分在零下,其他部分在零上。 线性代数的理论在历史上发展的比较晚。而线性几何则很久了。 ... 楚天舒
    才看到这个帖子。这个比喻真是通俗易懂
  • 非线性

    非线性 (Enchanté!) 2015-02-03 10:04:56

    正定矩阵必须是对称的,这是常识好吧…

    试想若某不对称矩阵A,假设其特征值全部为正,则

    一定存在某不全为零列向量x,使得

    x' A x < 0。

    这种向量只要找到一个就行。证明方法也很简单。对于任意随机生成的矩阵A,保证其特征值全部是正的。然后随机生成一系列向量x,进行乘积运算,很快就能找到负的。

    从理论上讨论,若A不对称则无法保证 x' A x 永远为正。

No comments:

Post a Comment