Sunday, December 29, 2013

fourier01 為了描述這種忽前忽後的運動,阿波羅尼奧斯(西元前262年–前190年)提出均輪與本輪(deferent and epicycle)的概念。按照這概念,行星的本身繞行的軌跡為一個圓圈,而這個圓圈的圓心又循著另一個圓圈的軌跡繞行;如此這般一個搭著一個,就像兒童樂園裏的咖啡杯遊戲一樣。任意軌道可以用足夠數量、仔細設定的本輪來模擬,因為這方法對應於現代的傅立葉變換[5]。

為了描述這種忽前忽後的運動,阿波羅尼奧斯(西元前262年–前190年)提出均輪與本輪(deferent and epicycle)的概念。按照這概念,行星的本身繞行的軌跡為一個圓圈,而這個圓圈的圓心又循著另一個圓圈的軌跡繞行;如此這般一個搭著一個,就像兒童樂園裏的咖啡杯遊戲一樣。任意軌道可以用足夠數量、仔細設定的本輪來模擬,因為這方法對應於現代的傅立葉變換[5]

牛頓旋轉軌道定理[编辑]
维基百科,自由的百科全书
跳转至: 导航搜索
圖1:吸引力 F(r)\,\! 造成藍行星公轉於青綠軌道。綠行星的角速度比藍行星快三倍,因此需要更強的向心力,這是由立方反比吸引力給出。固定不動的紅行星依靠立方反比排斥力來抵銷吸引力 F(r)\,\! 。這三個軌道的半徑皆為常數。
*點選本動畫的GIF版本
圖2:綠行星和藍行星的公轉軌道的半徑相同,但是綠行星的角速度是藍行星的 k\,\! 倍。圖1、圖3-圖5展示這類軌道的案例。
經典力學裏,牛頓旋轉軌道定理Newton's theorem of revolving orbits)辨明哪種連心力能夠改變移動粒子的角速度,同時不影響其徑向運動(圖1和圖2)。艾薩克·牛頓應用這理論於分析軌道的整體旋轉運動(稱為拱點進動,圖3)。月球和其他行星的軌道都會展現出這種很容易觀測到的旋轉運動。連心力的方向永遠指向一個固定點;稱此點為力中心點徑向運動表示朝向或背向力中心點的運動,角運動表示垂直於徑向方向的運動。
發表於1687年,牛頓在巨著《自然哲學的數學原理》,第一冊命題43至45裏,推導出這定理。在命題43裏,他表明只有連心力才能達成此目標,這是因為感受連心力作用的粒子,其運動遵守角動量守恆定律。在命題44裏,他推導出這連心力的特徵方程式,證明這連心力是立方反比作用力,與粒子位置離力中心點的徑向距離 r\,\!三次方成反比。在命題45裏,牛頓假定粒子移動於近圓形軌道,將這定理延伸至任意連心力狀況,並提出牛頓拱點進動定理Newton's apsidal precession theorem)。
天文物理學家蘇布拉馬尼揚·錢德拉塞卡在他的1995年關於《自然哲學的數學原理》的評論中指出,雖然已經過了三個世紀,但這理論仍然鮮為人知,有待發展[1]。自1997年以來,唐納德·淩澄-貝爾Donald Lynden-Bell)與合作者曾經研究過這理論[2][3]。2000年,費紹·瑪侯嵋Fazal Mahomed)與F·娃達F. Vawda)共同貢獻出這理論的延伸的精確解[4]


歷史背景[编辑]

從地球觀看到的火星的逆行運動圖案。
圖3:行星繞著太陽的公轉軌道呈橢圓形卵形oval))。隨著時間演進,這軌道會緩慢地旋轉(稱為拱點進動)。為了可視化,這橢圓軌道的離心率已被增大。在太陽系裏,大多數的軌道的離心率比較小的多,看起來接近圓形。
*點選本動畫的GIF版本
過去幾千年來,天文學家有系統地觀測天空中的星體運動,發現各種各樣的恆星有規律地繞行,相對位置永遠保持不變。可是,也有一些星體被觀測到「漫遊」於這些以恆星為背景的前方,其軌跡比較難以捉摸,大多數這種星體被稱為行星。雖然它們通常沿著一條路徑循著同樣方向從天空的這一端移動到那一端(請參閱黃道),但是某些獨特的行星有時候會短暫地逆轉其移動方向,顯示出逆行運動
為了描述這種忽前忽後的運動,阿波羅尼奧斯(西元前262年–前190年)提出均輪與本輪(deferent and epicycle)的概念。按照這概念,行星的本身繞行的軌跡為一個圓圈,而這個圓圈的圓心又循著另一個圓圈的軌跡繞行;如此這般一個搭著一個,就像兒童樂園裏的咖啡杯遊戲一樣。任意軌道可以用足夠數量、仔細設定的本輪來模擬,因為這方法對應於現代的傅立葉變換[5]。大約350年後,托勒密編纂出《天文學大成》。在這本書裏,他發展出來的系統能夠比美那時代最準確的天文觀測。托勒密採用亞里斯多德地心學說來解釋自己發展出來的系統。地心學說強調行星只能運行於以地球為圓心的同心圓球面。之後的一千多年,學術界公認這是最正確的宇宙模型。

No comments:

Post a Comment