Thursday, July 9, 2015

clifford 外微分形式 human eye brain 應用兩個糾纏的光子,並把每個光子之兩個自由度,動量和極化態,一齊考慮進來,他們在一個光子上應用這兩個自由度建構了不同的貝爾態,而要傳輸的極化態 是在其中一個光子上調出來的,他們成功地把極化態 由一個光子傳輸到另一個光子上,這兩光子的傳輸裝置只能傳輸純態


量子隱形傳輸
 
/李建二
 
 
近十年來「量子資訊(quantum information)」開始萌芽發展,本文針對其中重要之一環「量子隱形傳輸」(quantum teleportation) 作入門之介紹。
 
 


一、引言

很多人看過「星際航行(star trek)」這部電視連續劇。我第一次觀賞這個節目是在三十年前正在美國求學的時候,看到「航海家(Voyager)」星艦上的艦長柯克(Kirk)站在「傳輸室(transporter)」內,室外一位艦員按下控制鍵,柯克便罩在耀眼的光芒下,很快變淡,成稀疏光點而消逝,隨即在星艦下星球之某處(預先選定),先出現光點,再模糊形象,然後柯克出現了,這情境相信在很多人心理留下深刻的印象和懂憬,整個過程包含實体分解、實体傳輸及實体組合等三個步驟,人類的科學是否真的能夠建構這樣的設備?也許, 在遙遠()的未來,近十年來「量子資訊(quantum information)」開始萌芽發展,物理學家已經可以初步做到把一個光子的狀態傳輸到另一個不相干的光子上,這就是本文要介紹的「量子隱形傳輸」[1]

 

二、什麼是量子隱形傳輸 ?

    量子隱形傳輸是量子計算和量子資訊中重要的一環,它們都嘗試應用量子系統來從事計算、儲存及傳輸資訊,任一量子系統所處的狀態稱之為量子態,在不同的環境和刺激下,可以處於不同的量子態,量子隱形傳輸廣義來說如下:把系統A之任一量子態經過一套設備完整地傳輸到系統B。這不是拷貝,因為原來系統A之量子態在傳輸後完全被破壞了。但這樣的定義也包含了這種情形:系統A和系統B間可以相互作用,如果排除這種可能,就得到一般所認知的量子隱形傳輸:系統A和系統B 可以相距遙遠(譬如在銀河之兩端),彼此間無任何作用之可能。在這樣的情況下,把系統A之任一量子態經過一套設備(包括古典通訊)完整地傳輸到系統B。要大約了解這是如何做到,也就是它的機制,則先要介紹一些量子系統完全異於古典系統的特殊性質。

 

三、量子態

    前面提到的量子系統,它的演變是依據量子理論來進行,其量子態也完全由量子理論來決定。 實際上所有在巨觀世界及微觀世界的系統都是量子理論適用的範疇,只是在巨觀世界裡量子的行為一般都不顯著,在這樣的情形下,量子理論趨近於古典理論而運用到巨觀現象。而在微觀世界理,古典理論不能適用,微觀現象只能用量子理論來描述。所以這裡所提的量子系統都是微觀世界裡的系統,如分子、原子、電子、光子、量子點(quantum dot)、輻射場等。以下將以光子為例說明量子態及其特殊性。

從量子理論的觀點,電磁波是由一群光子所組成。每一光子具有動量及兩個極化態(polarization)。這三者互相垂直,我們把這兩個極化態叫做水平極化態和垂直極化態,分別以  表示之並以之作為基本態,任意之極化態則是基本態之任意線性疊合如下:

 

                     (1)


其中   是任意複數,代表在狀態之機率,且其總機率為壹: 。 亦即當你對此光子做測量時得到水平極化態之機率是,而得到垂直極化態之機率是。但在量子理論中,測量(measurement)有其特殊性:如果你量到的是水平極化態,則測量後,此光子就保持在此水平極化態,亦即原本之狀態在測量時被破壞而崩潰(Collapse)成測量後之水平極化態。所以一次的測量,是無法決定,而且又把破壞了,這就是說如果你想把一個你不知道的光子狀態傳輸給別人,你想靠測量此光子以獲得,進而告知對方進而重組是不可能的。

四、糾纏態

上一節介紹了一個光子的量子態。本節將介紹由兩個光子組成的系統之量子態。我們一樣只考慮光子的極化態,並選擇為基底(即基態之集合)。其中底標1(2)代表第一()個光子, 兩-光子之極化態可以分為兩類,第一類是兩個光子的極化態各自獨立互不關連,其一般式可寫成 , 其中


                    (2)


 上面的基態都屬於此類。 第二類是兩個光子的極化態不能寫成各自狀態之張量乘積(tensor product),亦即 。 我們稱之為兩-光子之糾纏態(entangled state)。在糾纏態中,兩個光子之極化態互相關連,不受時空之限制,亦即具有非侷域性關連(non-local correlation)。我們也可以選擇四個正規(orthonormal) 糾纏態作為基底,常用的稱之為貝爾態(Bell states),其形式如下:
            ,     (3)

 

我們以糾纏態為例來進一步說明,在此態中它告訴我們第一個光子在水平極化態而第二個光子在垂直極化態之機率是1/2,同樣的第一個光子在垂直極化態而第二個光子在水平極化態之機率也是1/2,因此各別光子之極化態是任意(Random)而未知的,但如果我們對第一個光子進行測量而得到水平極化態,則第二個光子就自動地瞬間地處在垂直極化態,不管它離第一個光子有多遠(譬如在銀河的另一端),這就是所謂的非侷域性關連, 這種現象是完全非古典的,貝爾狀態又稱為 EPR (EPR Pairs),其中E代表愛因斯坦,PR是另外兩位物理學家(B. Podolsky and N. Rosen),他們三人於1935 [2]年發表一篇著名的論文質疑非侷域性關連及量子力學之完整性,引起相當熱烈的論辨,後來實驗肯定了非侷域性關連的存在。





 


五、貝爾態測量

一個光子的水平或垂直極化態可以用檢極器(Analyzer)或極化分光器(polarized beam splitter)來分析, 如果測量的結果是水平極化, 則測量後此光子原先之狀態即崩潰而變成水平態,對兩個光子之系統,我們也可以去量各別光子的水平或垂直極化態,如果測量的結果是第一個光子是水平態,第二個光子是垂直態,則測量後此系統之原先狀態便崩潰成態,但我們不一定要量光子的水平或垂直極化態,也可以直接設法去測量兩光子之貝爾態,則測量後此兩光子系統便處在所量到的貝爾態上,這就是所謂的貝爾態測量(Bell state measurement)。兩光子貝爾態測量中,主要的設備是 5050 分光器(beam splitter)。當兩光子同時抵達分光器時,兩光子之波包( wave packet)相互重疊,因而產生干涉( interference)效應,每一個光子經過分光器後可能繼續前進或被反射,調整分光器使兩光子離開分光器後之兩個途徑之對應狀態相互疊合,以用一個分光器作貝爾態測量為例如圖一,
    我們在光子離開分光器(BS)出來的兩個途徑上各置一個光子偵測器(detector) d1d2,並僅對兩個偵測器同時偵測到光子時作記錄,這就是所謂的同時量測(coincidence measurement)。這樣的設置意謂每一出來的途徑必須有一個光子,所以只有兩個可能:兩個光子經過分光器時都繼續前進或同時被反射,因為這兩種情形是無法區分的,所以出來後之兩光子態是這兩種情形之狀態之線性疊合(linear superposition),其振幅(amplitude)大小相同而異號,因為兩光子之任意狀態都可以上述之四個正交(orthogonal)的貝爾態之線性疊合來表示,但觀察這些貝爾態在把兩個光子對調下,只有變號,其它保持不變,所以在這樣的實驗設置下,只有貝爾態是容許的,其他都相互抵消了,也就是量到了一個貝爾態,而原來兩光子之狀態也崩潰成此貝爾態了。

   

六、量子隱形傳輸之機制

    1993年由IBM 特別研究員(IBM Fellow) Charles H. Bennett [3] 領導的國際研究團隊共六人,聯名發表一篇文章,證明在原先系統上之狀態被破壞下,完全的量子隱形傳輸在理論上是實際可能的。在此之前,科學家們並不認為它真的可行,因為它破壞了量子力學中的測不準原理(uncertainty principle)。這個原理說明不可能經由一次測量而得知系統之所有資訊,譬如對一個粒子的位子量的愈正確,則它的動量就愈不正確, 且對該粒子之干擾也愈嚴重,終於完全破壞了該粒子之原先狀態且無法得知所有資訊,因此無法據以再造一個具有完全相同狀態的粒子,所以認為完全的量子隱形傳輸是不可能的,但是Bennett 的研究團隊應用量子力學中所特有的糾纏態,不必要去量知原先粒子之所有資訊而在理論上達成完全的量子隱形傳輸,底下我們描述這個機制。




    假定甲、乙、丙三個人各自擁有一個粒子,分別稱為123粒子,甲扮演委託人的角色,在粒子1上製造了一個狀態後,交給乙。乙扮演寄件者之角色,將把狀態傳輸給丙所擁有的粒子3。在這裡丙扮演接收者的角色,乙跟丙所擁有的粒子2及粒子3事先就製成為糾纏態後,再各自擁有,乙收到甲送來的粒子1後,便對粒子1及粒子2作貝爾態測量,量到某個貝爾態後,便以古典通訊方式,如電話,通知丙其測量的結果,丙依據測量的結果對粒子3作適當處理使粒子3處在粒子1原先要傳輸的狀態上,因此達成了完全的量子隱形傳輸,在這整個傳輸過程中,乙跟丙都不知道是甚麼狀態,而且粒子1上之原先狀態完全被破壞了,所以這不是拷貝,而是真正的傳輸,粒子2及粒子3間之糾纏態是重要的關鍵,因為在乙對粒子1及粒子2作了貝爾態測量後,粒子2之狀態變了,丙所擁有的粒子3之狀態自動且瞬間地跟著改變了,不管乙和丙相距多遠,所以丙只要依據乙貝爾態測量之結果,作相對應唯一的處理就可以使粒子3 處在狀態上,因為需要古典通訊以告知測量結果,所以這個傳輸不是瞬間的,而仍然受限於相對論,即訊息的傳送不能比光速快,之所以稱為「隱形」是因為在傳輸過程中,除了開始和最後,都沒有出現,這個機制不僅適用於純態,也適用於非純態。

                    

七、量子隱形傳輸之實驗

Bennett 研究團隊所提出的機制一直到1997年才在澳大利亞Innsbruck 大學由Anton Zeilinger [4] 所領導的研究團隊第一次作出來。 Innsbruck 實驗成功地把一個光子的任意極化態完整地傳輸到另一個光子上, 但是成功的機率只有25%,這是因為在作貝爾態測量時,他們用的方法就是上面所介紹的貝爾態測量,這個方法只能量到一個貝爾態,其他三個貝爾態則量不到,因為四個貝爾態出現的機率是相同的,所以成功地傳輸的機率只有25%Innsbruck 實驗之基本架構如圖二。其後在1998年初,在義大利羅馬大學的研究團隊[5]應用兩個糾纏的光子,並把每個光子之兩個自由度,動量和極化態,一齊考慮進來,他們在一個光子上應用這兩個自由度建構了不同的貝爾態,而要傳輸的極化態是在其中一個光子上調出來的,他們成功地把極化態由一個光子傳輸到另一個光子上,這兩光子的傳輸裝置只能傳輸純態,非純態就無能為力了,同年年底,在美國加州理工學院由Jeff Kimble[6]領導的光學研究團隊發表了一個完全成功的量子隱形傳輸,只是他們用的不是三個或兩個光子而是幅射場(Radiation Field),所用的狀態不是極化態或動量而是一致態(coherent state),在他們的裝置下,可以測量所有的貝爾態,因此甲送進之狀態皆能傳輸到丙,傳輸機率為100% 

  

八、未來展望

以上實驗所完成的量子隱形傳輸都是在同樣的量子系統間傳輸狀態,而且用的量子系統都是光子(電磁場),未來應可以發展到不同的量子系統,如電子,原子,分子,量子點等,而且不限於同樣量子系統間狀態之傳輸,我們如果能夠把一個不穩定或壽命短的系統上之資訊傳輸到一個穩定且壽命長的系統上,就能夠發展量子記憶(quantum memory),當然我們都希望能像「航海家」星艦上一樣地傳輸人或實物,也許在遙遠的未來會成功,但是實体之傳輸應該完全不同於狀態之傳輸,其困難度是難於估計的,除此以外,量子隱形傳輸也預期將在量子電腦及密碼學方面扮演重要的角色。

 參考資料:


[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

[3] C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

[4] D. Bouwmeester et al., Nature 390, 575 (1997).

[5] S. Popescu, quant-ph/9501020, 1995 ; D. Boschi et al., Phys. Rev. Lett. 80, 1121 (1998).

[6] A. Furusawa et al., Science 282, 706 (1998).

 

作者簡介

李建二,美國普渡大學物理博士,現任職國立成功大學物理學系教授。研究專長:粒子物理,目前研究興趣在量子資訊科學方面。


量子隱形傳輸
 
/李建二
 
 
近十年來「量子資訊(quantum information)」開始萌芽發展,本文針對其中重要之一環「量子隱形傳輸」(quantum teleportation) 作入門之介紹。
 
 


一、引言

很多人看過「星際航行(star trek)」這部電視連續劇。我第一次觀賞這個節目是在三十年前正在美國求學的時候,看到「航海家(Voyager)」星艦上的艦長柯克(Kirk)站在「傳輸室(transporter)」內,室外一位艦員按下控制鍵,柯克便罩在耀眼的光芒下,很快變淡,成稀疏光點而消逝,隨即在星艦下星球之某處(預先選定),先出現光點,再模糊形象,然後柯克出現了,這情境相信在很多人心理留下深刻的印象和懂憬,整個過程包含實体分解、實体傳輸及實体組合等三個步驟,人類的科學是否真的能夠建構這樣的設備?也許, 在遙遠()的未來,近十年來「量子資訊(quantum information)」開始萌芽發展,物理學家已經可以初步做到把一個光子的狀態傳輸到另一個不相干的光子上,這就是本文要介紹的「量子隱形傳輸」[1]

 

二、什麼是量子隱形傳輸 ?

    量子隱形傳輸是量子計算和量子資訊中重要的一環,它們都嘗試應用量子系統來從事計算、儲存及傳輸資訊,任一量子系統所處的狀態稱之為量子態,在不同的環境和刺激下,可以處於不同的量子態,量子隱形傳輸廣義來說如下:把系統A之任一量子態經過一套設備完整地傳輸到系統B。這不是拷貝,因為原來系統A之量子態在傳輸後完全被破壞了。但這樣的定義也包含了這種情形:系統A和系統B間可以相互作用,如果排除這種可能,就得到一般所認知的量子隱形傳輸:系統A和系統B 可以相距遙遠(譬如在銀河之兩端),彼此間無任何作用之可能。在這樣的情況下,把系統A之任一量子態經過一套設備(包括古典通訊)完整地傳輸到系統B。要大約了解這是如何做到,也就是它的機制,則先要介紹一些量子系統完全異於古典系統的特殊性質。

 

三、量子態

    前面提到的量子系統,它的演變是依據量子理論來進行,其量子態也完全由量子理論來決定。 實際上所有在巨觀世界及微觀世界的系統都是量子理論適用的範疇,只是在巨觀世界裡量子的行為一般都不顯著,在這樣的情形下,量子理論趨近於古典理論而運用到巨觀現象。而在微觀世界理,古典理論不能適用,微觀現象只能用量子理論來描述。所以這裡所提的量子系統都是微觀世界裡的系統,如分子、原子、電子、光子、量子點(quantum dot)、輻射場等。以下將以光子為例說明量子態及其特殊性。

從量子理論的觀點,電磁波是由一群光子所組成。每一光子具有動量及兩個極化態(polarization)。這三者互相垂直,我們把這兩個極化態叫做水平極化態和垂直極化態,分別以  表示之並以之作為基本態,任意之極化態則是基本態之任意線性疊合如下:

 

                     (1)


其中   是任意複數,代表在狀態之機率,且其總機率為壹: 。 亦即當你對此光子做測量時得到水平極化態之機率是,而得到垂直極化態之機率是。但在量子理論中,測量(measurement)有其特殊性:如果你量到的是水平極化態,則測量後,此光子就保持在此水平極化態,亦即原本之狀態在測量時被破壞而崩潰(Collapse)成測量後之水平極化態。所以一次的測量,是無法決定,而且又把破壞了,這就是說如果你想把一個你不知道的光子狀態傳輸給別人,你想靠測量此光子以獲得,進而告知對方進而重組是不可能的。

四、糾纏態

上一節介紹了一個光子的量子態。本節將介紹由兩個光子組成的系統之量子態。我們一樣只考慮光子的極化態,並選擇為基底(即基態之集合)。其中底標1(2)代表第一()個光子, 兩-光子之極化態可以分為兩類,第一類是兩個光子的極化態各自獨立互不關連,其一般式可寫成 , 其中


                    (2)


 上面的基態都屬於此類。 第二類是兩個光子的極化態不能寫成各自狀態之張量乘積(tensor product),亦即 。 我們稱之為兩-光子之糾纏態(entangled state)。在糾纏態中,兩個光子之極化態互相關連,不受時空之限制,亦即具有非侷域性關連(non-local correlation)。我們也可以選擇四個正規(orthonormal) 糾纏態作為基底,常用的稱之為貝爾態(Bell states),其形式如下:
            ,     (3)

 

我們以糾纏態為例來進一步說明,在此態中它告訴我們第一個光子在水平極化態而第二個光子在垂直極化態之機率是1/2,同樣的第一個光子在垂直極化態而第二個光子在水平極化態之機率也是1/2,因此各別光子之極化態是任意(Random)而未知的,但如果我們對第一個光子進行測量而得到水平極化態,則第二個光子就自動地瞬間地處在垂直極化態,不管它離第一個光子有多遠(譬如在銀河的另一端),這就是所謂的非侷域性關連, 這種現象是完全非古典的,貝爾狀態又稱為 EPR (EPR Pairs),其中E代表愛因斯坦,PR是另外兩位物理學家(B. Podolsky and N. Rosen),他們三人於1935 [2]年發表一篇著名的論文質疑非侷域性關連及量子力學之完整性,引起相當熱烈的論辨,後來實驗肯定了非侷域性關連的存在。





 


五、貝爾態測量

一個光子的水平或垂直極化態可以用檢極器(Analyzer)或極化分光器(polarized beam splitter)來分析, 如果測量的結果是水平極化, 則測量後此光子原先之狀態即崩潰而變成水平態,對兩個光子之系統,我們也可以去量各別光子的水平或垂直極化態,如果測量的結果是第一個光子是水平態,第二個光子是垂直態,則測量後此系統之原先狀態便崩潰成態,但我們不一定要量光子的水平或垂直極化態,也可以直接設法去測量兩光子之貝爾態,則測量後此兩光子系統便處在所量到的貝爾態上,這就是所謂的貝爾態測量(Bell state measurement)。兩光子貝爾態測量中,主要的設備是 5050 分光器(beam splitter)。當兩光子同時抵達分光器時,兩光子之波包( wave packet)相互重疊,因而產生干涉( interference)效應,每一個光子經過分光器後可能繼續前進或被反射,調整分光器使兩光子離開分光器後之兩個途徑之對應狀態相互疊合,以用一個分光器作貝爾態測量為例如圖一,
    我們在光子離開分光器(BS)出來的兩個途徑上各置一個光子偵測器(detector) d1d2,並僅對兩個偵測器同時偵測到光子時作記錄,這就是所謂的同時量測(coincidence measurement)。這樣的設置意謂每一出來的途徑必須有一個光子,所以只有兩個可能:兩個光子經過分光器時都繼續前進或同時被反射,因為這兩種情形是無法區分的,所以出來後之兩光子態是這兩種情形之狀態之線性疊合(linear superposition),其振幅(amplitude)大小相同而異號,因為兩光子之任意狀態都可以上述之四個正交(orthogonal)的貝爾態之線性疊合來表示,但觀察這些貝爾態在把兩個光子對調下,只有變號,其它保持不變,所以在這樣的實驗設置下,只有貝爾態是容許的,其他都相互抵消了,也就是量到了一個貝爾態,而原來兩光子之狀態也崩潰成此貝爾態了。

   

六、量子隱形傳輸之機制

    1993年由IBM 特別研究員(IBM Fellow) Charles H. Bennett [3] 領導的國際研究團隊共六人,聯名發表一篇文章,證明在原先系統上之狀態被破壞下,完全的量子隱形傳輸在理論上是實際可能的。在此之前,科學家們並不認為它真的可行,因為它破壞了量子力學中的測不準原理(uncertainty principle)。這個原理說明不可能經由一次測量而得知系統之所有資訊,譬如對一個粒子的位子量的愈正確,則它的動量就愈不正確, 且對該粒子之干擾也愈嚴重,終於完全破壞了該粒子之原先狀態且無法得知所有資訊,因此無法據以再造一個具有完全相同狀態的粒子,所以認為完全的量子隱形傳輸是不可能的,但是Bennett 的研究團隊應用量子力學中所特有的糾纏態,不必要去量知原先粒子之所有資訊而在理論上達成完全的量子隱形傳輸,底下我們描述這個機制。




    假定甲、乙、丙三個人各自擁有一個粒子,分別稱為123粒子,甲扮演委託人的角色,在粒子1上製造了一個狀態後,交給乙。乙扮演寄件者之角色,將把狀態傳輸給丙所擁有的粒子3。在這裡丙扮演接收者的角色,乙跟丙所擁有的粒子2及粒子3事先就製成為糾纏態後,再各自擁有,乙收到甲送來的粒子1後,便對粒子1及粒子2作貝爾態測量,量到某個貝爾態後,便以古典通訊方式,如電話,通知丙其測量的結果,丙依據測量的結果對粒子3作適當處理使粒子3處在粒子1原先要傳輸的狀態上,因此達成了完全的量子隱形傳輸,在這整個傳輸過程中,乙跟丙都不知道是甚麼狀態,而且粒子1上之原先狀態完全被破壞了,所以這不是拷貝,而是真正的傳輸,粒子2及粒子3間之糾纏態是重要的關鍵,因為在乙對粒子1及粒子2作了貝爾態測量後,粒子2之狀態變了,丙所擁有的粒子3之狀態自動且瞬間地跟著改變了,不管乙和丙相距多遠,所以丙只要依據乙貝爾態測量之結果,作相對應唯一的處理就可以使粒子3 處在狀態上,因為需要古典通訊以告知測量結果,所以這個傳輸不是瞬間的,而仍然受限於相對論,即訊息的傳送不能比光速快,之所以稱為「隱形」是因為在傳輸過程中,除了開始和最後,都沒有出現,這個機制不僅適用於純態,也適用於非純態。

                    

七、量子隱形傳輸之實驗

Bennett 研究團隊所提出的機制一直到1997年才在澳大利亞Innsbruck 大學由Anton Zeilinger [4] 所領導的研究團隊第一次作出來。 Innsbruck 實驗成功地把一個光子的任意極化態完整地傳輸到另一個光子上, 但是成功的機率只有25%,這是因為在作貝爾態測量時,他們用的方法就是上面所介紹的貝爾態測量,這個方法只能量到一個貝爾態,其他三個貝爾態則量不到,因為四個貝爾態出現的機率是相同的,所以成功地傳輸的機率只有25%Innsbruck 實驗之基本架構如圖二。其後在1998年初,在義大利羅馬大學的研究團隊[5]應用兩個糾纏的光子,並把每個光子之兩個自由度,動量和極化態,一齊考慮進來,他們在一個光子上應用這兩個自由度建構了不同的貝爾態,而要傳輸的極化態是在其中一個光子上調出來的,他們成功地把極化態由一個光子傳輸到另一個光子上,這兩光子的傳輸裝置只能傳輸純態,非純態就無能為力了,同年年底,在美國加州理工學院由Jeff Kimble[6]領導的光學研究團隊發表了一個完全成功的量子隱形傳輸,只是他們用的不是三個或兩個光子而是幅射場(Radiation Field),所用的狀態不是極化態或動量而是一致態(coherent state),在他們的裝置下,可以測量所有的貝爾態,因此甲送進之狀態皆能傳輸到丙,傳輸機率為100% 

  

八、未來展望

以上實驗所完成的量子隱形傳輸都是在同樣的量子系統間傳輸狀態,而且用的量子系統都是光子(電磁場),未來應可以發展到不同的量子系統,如電子,原子,分子,量子點等,而且不限於同樣量子系統間狀態之傳輸,我們如果能夠把一個不穩定或壽命短的系統上之資訊傳輸到一個穩定且壽命長的系統上,就能夠發展量子記憶(quantum memory),當然我們都希望能像「航海家」星艦上一樣地傳輸人或實物,也許在遙遠的未來會成功,但是實体之傳輸應該完全不同於狀態之傳輸,其困難度是難於估計的,除此以外,量子隱形傳輸也預期將在量子電腦及密碼學方面扮演重要的角色。

 參考資料:


[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

[3] C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

[4] D. Bouwmeester et al., Nature 390, 575 (1997).

[5] S. Popescu, quant-ph/9501020, 1995 ; D. Boschi et al., Phys. Rev. Lett. 80, 1121 (1998).

[6] A. Furusawa et al., Science 282, 706 (1998).

 

作者簡介

李建二,美國普渡大學物理博士,現任職國立成功大學物理學系教授。研究專長:粒子物理,目前研究興趣在量子資訊科學方面。

Email:celee@mail.ncku.edu.tw





学习外微分形式的一些感受

                                          PB07210141   焦凡书

外微分形式把Stokes,Gauss公式联系起来,而且推广到高维空间。初学时觉得很“神奇”,查阅了一些书籍后才知道Poincare’指出多重积分的体积元素应有一个正负定向导致了外微分的出现。而外微分的出现可以说标志着微积分从古典走向现代。在物理,力学,偏微分方程,微分几何中,外微分发挥了巨大的作用。外微分有其更本质的含义,下面是我的一些总结和感受。

如果我们研究曲面(双侧曲面)的方向性,那么:在双侧曲面上任意取定一点M,并在M处选定一个单位法向量n(M),对于曲面S上任意一点M’,在S上做一条连接M,M’的曲线,由n(M’)沿曲线连续变化的原则,就可以唯一的确定M’处的单位法向量n(M’),从而就完全确定了双侧曲面的一个侧。曲面SM处的单位法向量有且仅有两个,它们是互为相反方向的单位向量,这两个向量正好确定了曲面的两个定侧。

在双侧曲面内令:x=x(u,v) y=y(u.,v)

则面积元素dA=dxdy=||dudv=||dudv=()dudv

若将x,y对换dA=dydx=||dudv=||dudv=()dudv

 

可得dxdy=-dydx

dxdx=0

我们把满足上述关系即:两个相同微分乘积为零,不同微分乘积变换顺序时变号的微分之间的乘积称为微分外积,用 表示。由微分的外乘积乘上函数组成的微分形式称为外微分形式。若P,Q,R,Hx,y,z的函数,则Pdx+Qdy+Rdz为一次外微分形式。Pdydz+Qdzdx+Rdxdy为二次外微分形式,Hdxdydz为三次外微分形式。

可以证得(1Newton-Leibniz公式用外微分表示=f(b)-f(a)=

         2Green公式用外微分表示Pdx+Qdy,=,

         

         3Gauss公式用外微分表示Pdydz+Qdzdx+Rdxdy, Pdydz+Qdzdx+Rdxdy= dxdydz,

         4Stokes公式用外微分表示Pdx+Qdy+Rdz, ,


   而数量场的梯度,向量场的散度,旋度分别与之对应。因此他们的关系可以表示为     


外微分形式的次数     

空间

公式

对应的度

0

直线段

Newton-Leibniz

梯度

1

平面区域

Green

旋度

1

空间曲面

Stokes

旋度

2

空间区域

Gauss

散度

 

由此得出公式的一般形式:

定理  设为外微分形式,d是它的外微分,则有

Gd的积分区域,G表示G的边界。

Stokes公式揭示了微分与积分在空间上的关系。若令d为算子,则它们对偶.

所以说Stokes公式是微积分中最本质的,由它引出了微分几何,广义相对论的很多内容,我的知识有限,希望以后有能力了解更多。

参考书目:《高等数学导论》

          《微积分五讲》龚升
 Clifford 几何代数的基本观点
已有 743 次阅读 2015-3-25 12:04 |个人分类:生活点滴|系统分类:科研笔记
 
      高斯认为:曲面上的曲线微分长度平方、曲面上曲线的弯曲量度(曲率)是曲面上的任意曲线的基本度量量,具客观性。这是物理性的,为整个曲面几何理论的要素。这里,最小的几何单位是微元曲线、及两条正交微元曲线所形成的微元面。这个几何是没有点概念的。因为点是空(0长度,0面积)。
      Clifford 几何代数的基本观点就是:物理上有意义的流形变换是保证上面的两类量的客观不变性。
      黎曼几何是取曲线微分长度平方的客观不变性,建立黎曼张量代数。而李代数是取曲线微分曲率为客观不变量条件下的张量,其理论基础可归入旋转不变群。群论的时髦是出于上面的背景。物理学上的运动:微元长度的变化(对称群);曲率的变化(旋转群)。反对称群(李群,微元长度为0)是旋转群的低阶逼近。
      以对称群为主导的代数是:可易的。对于非对称群,其导出的代数系统是:不可易的。
      在过去的一百来年里,数学家在群论上的开拓进取成就很大。但是,对物理学和工程科学而言,有两个致命缺陷:1以点的概念(点群)为主导;2。只取两高斯不变量中的一个。从而,自身理论上的完备和优美是以脱离物理真实的理想化近似来实现的。这是哲学路线上的错误。
      在苦苦作战百年后,梦回头,才意识到:这两类不变性要同时满足!这就是Clifford 几何代数进入基础物理学的客观背景。也就是回到了实事求是,以物理客观性为基准的轨道上来。这是哲学路线上的调整。
      不依赖于点概念的几何也就基本上有了基本的理论框架。这是高斯曲面科学理念的回归。发达国家有部分科学家呼吁:在高中课程中,必须为大学学习Clifford 几何代数作必要的前期教学。如何做?他们还在思考。而他们还认为,大学的相关课程,尤其是物理学基础理论的课程,必须改为用Clifford 几何代数表述。少数名校已经是这样做了。
      数学必须服从物理上的客观性,这条原则将在今后很长时间里主导基础科学的发展方向。这对工程科学是福音!因为,Clifford 几何代数是可以直观操作的,它再也不是那堆玄而有玄的、优美的、难于直观理解的、工程性操作起来难而又难的、公理化封闭体系。
      我国是工程大国,如果要进入世界先进水平行列,Clifford 几何代数必须进入工程科学。但是,我认为,除非科学界出现实质性的变革,否则,这个机会我国学界抓不住,从而进入不了工程科学。
      国外的大多数学者、大多数高校都在抵制Clifford 几何代数进教科书。但是,他们目前的选择并不代表科学的主流发展走向。然而,我国学界的从众心理决定了,我们参与抵制!尽管我个人不希望如此,但客观事实就是如此!
      星星之火,可以燎原!我们无论如何抵制,消灭不了Clifford 几何代数成为基础科学理论主流表述工具的趋势。正如无论如何批相对论,无法阻止张量表述成为过去百年来基础科学理论主流表述工具的事实。
      明智的选择是:以史为鉴!

No comments:

Post a Comment