http://blog.csdn.net/wangxiaojun911/article/details/6212405
漫话流体力学
相传在中国宋朝时候,有一位能工巧匠叫怀丙和尚。怀丙和尚足智多谋,留下了许多有名的故事。有一年陕西发大水,冲走了一座浮桥边的两只铁牛。这铁牛重达几万斤,难以打捞。怀丙和尚命人打造了两艘大船,装满沙石,然后连接到铁牛上,然后再把船中沙石丢弃,随着船身上浮,铁牛就被捞起来了。
无独有偶,在距宋代一千多年前的西方,也有一位能人用浮力解决过难题。这个人就是希腊人阿基米德(Archimedes)。公元前260年左右,叙拉古(今意大利西西里岛)国王给阿基米德出了一个难题。原来,国王请人用黄金打造了一顶纯金王冠,但是国王怀疑王冠掺假,于是请阿基米德来甄别。阿基米德把王冠放到天平的一端,然后再把等重的金块放上天平的另一端,最后把天平浸入水中。结果天平入水之后不再保持平衡,王冠掺了假。
这两个故事都是利用了浮力来化解难题,但是有一个非常不一样的地方。捞铁牛的古人运用经验来定性解决问题,并没有进行系统研究和归纳。而阿基米德从数学入手,定量分析,归纳出了“阿基米德原理”。
“阿基米德原理”提出:流体中的物体受到向上的浮力,其浮力大小等于其排开流体的重量。其中“流体”可为液体或气体。“重量”是因为万有引力而引发的作用力。这是最早的流体力学相关的能够定量计算的定律。
十五世纪文艺复兴期间,艺术大师达芬奇(da Vinci)继续对流体的特点进行了研究。他仔细思考了鸟类的飞翔提点,观察了水面波纹传播的规律,把兴趣的重点放在“涡漩(Eddy)”上。常态下的流体是稳定的,但是当流体的速度达到一定大小的时候,稳定性就会被破坏,形成“湍流”。“湍流”就是由一个个涡漩组成的。
达芬奇更加有趣的分析是关于液体的体积流量守恒原理:在同一管道中,相等的时间里流过的不同面积的横截面的流体体积是相同的。这个结论看似简单,其实暗含一个极其重要的假设:流体不可压缩。
1589年左右,意大利科学家伽利略(Galileo)完成了世界上第一本完整的物理学教科书:《流体力学》。这本教科书很有特点,伽利略使用了讽刺喜剧般讲故事的方法来阐述他的观念,令读者感到大为好奇,产生了一定影响。
1641年,意大利科学家托里拆利(Torricelli)设计了一个著名的实验来测定气体压力。他发现封闭真空水银管中的水银高度一直是76厘米,因为空气有重量,大气压力把水银压在了76厘米处。
托里拆利深受伽利略影响。早在1628年,托里拆利的导师卡斯德利就写了一本关于流体力学的著作,托里拆利当即指出其中的一处重要错误。卡斯德利正是伽利略的学生。卡斯德利认为,如果在一个水箱侧面钻一个孔,那么小孔处水流速度与小孔距离水面的距离成正比。托里拆利的实验表明,应该是与距离的平方根成正比。托里拆利的学说产生了深远的影响,导致流体力学从力学中分离出来,成为了独立的一个学科。有趣的是,伽利略和托里拆利的结论让很多阿基米德的理论破产。
法国数学家帕斯卡(Pascal)承袭了托里拆利的工作。帕斯卡在实验后认为:密闭容器中流体任意一部分的压强向流体的各个方向传递,而且大小相等。帕斯卡定律的数学描述为:F1/A1 = F2/A2。F1,F2是施加在流体上面的力,A1,A2是施加力的作用面积。帕斯卡定律在液压传动方面有非常重要的意义。“帕斯卡”也变成了国际压强单位。
与此同时,爱尔兰科学家波义耳(Boyle)着手研究空气的“弹性”。他找来一只羊的膀胱,用抽气机抽出气体,结果膀胱变小。充入气体,膀胱又变大。1662年,波义耳仔细研究了实验数据,提出了“波义耳定律”:气体的压强与体积的乘积是一个常数。
1687年,牛顿出版了《自然哲学的数学原理》。牛顿等人认为古老的流体力学与工程实际相差甚远,决定增加一些系数。牛顿把物体间的摩擦力引入流体中,认为流体内也存在与摩擦力类似的“粘性力”。法国物理学家达朗贝尔(Rond d'Alembert)按照牛顿的思路用水中的船只作了实验,证明了流体中的粘性阻力与物体运动速度成平方关系。
1755年,瑞士科学家欧拉(Euler)假设了一种理想流体(没有粘性,不可压缩)并列出了流体力学的基本方程。在这个模型中,决定流体运动的只有压力。模型定义的三个向量场分别为速度场u,压力场p,和密度场rho,它们都是位置s和时间t的函数。
这个等式看似复杂,其实就是牛顿第二定律的翻版。牛顿第二定律说“物体的加速度与物体所受的合外力成正比,与物体质量成反比”。数学表达式为a = F / m。欧拉公式也非常类似,左边两项合起来是质点运动的加速度,右边表示单位质量的微粒压力变化的总合。
左边第一项表示空间s中的质点速度的时间变化率。左边第二项表示速度为u的质点经微小时间变化后到达了另一个位置,新的位置和原来的位置的速度不一样。u对s的偏导数即为速度在不同位置的变化率,乘上u就得到了新的位置速度改变量。我们在中学物理里面只学了第一项,是因为对于固体(solid)和粒子我们有不同的定义。第二项是关于流体粒子运动带来的变化。
如果考虑三维情况,令坐标轴为u,v,w,并考虑重力方向,可以推导以下欧拉方程组。
欧拉方程表明,由液体的内部压力可以模拟液体微粒的运动方式,反过来由速度也可以解出内部压力。欧拉方程是非线性方程,即使用今天的电子计算机来求解也很困难。在两百多年前的欧洲,人们试图化简这个方程,其中以“伯努利方程”最为著名。
瑞士学者D.伯努利(Bernoulli)认为,对于密度不变,定常流动(流场不随时间变化,流场只是空间坐标的函数)的流体的一维情景,可以概括如下:
伯努利方程可由欧拉方程做出如上化简后积分得到。从我们学过的动能定理知道,速度的二次方其实是物体的动能。所以伯努利方程实际告诉了我们是压力导致了动能的变化。由于没有考虑粘性,其实右边的“常数”其实并不准确。
十八世纪的法国科学家拉格朗日(Lagrange)提出了研究流体力学的一种方法,它着眼于单个质点的运动,分析其运动轨迹,从而得出整个流体的运动。由此引出的“半拉格朗日”法仅研究终点在空间节点上的质点。相比较而言,欧拉的方法着眼于空间点,把空间分成一个网格体。网格上的每个节点上有速度、质量和密度等量,这些量的变化规律反映了流体的变化规律。拉格朗日又称“质点法”,欧拉法又称“空间法”。
就像前面说过的,尽管欧拉、伯努利运用了牛顿开创的力学定律和微积分,但是没有考虑牛顿提出的流体粘性,理论结果与实验结果相去甚远。而过于精细的方程又无法求解。流体力学分化为了两派:支持继续进行纯理论推导的流体理论派,支持采用半理论半实际测量的水力派。两派相互争辩,这样又过了一百多年。
纯理论研究想要获得突破,关键是要建立合适的粘性模型。1822年,纳维最早使用了微分方法建立了不可压缩粘性流体的方程组。1845年,英国人斯托克斯进一步完善了这些方程,引入粘性系数。这些方程通常被称为“Navier-Stokes equations”(NS方程组)。
NS方程组告诉了我们一种液体究竟有多粘。它有几个基本假设:1、流体必须是连续的(内部没有空隙,比如溶解的气泡);2、所有的向量场(速度、压强、密度…)全部可微分。NS方程组的求解极其困难,工程中的大多数问题只能获得近似答案。目前科学家只求解得到了70多个精确的特解。
NS方程极其复杂。假如我们讨论不可压缩流体,并且假设粘性系数是常数,可以把NS方程组化简为以下的简单形式:
(1)
(2)
(1) 式左侧就是欧拉方程的加速度。右侧第一项是欧拉方程的压力因素。右侧第三项f是液体所受合外力。右侧第二项就是斯托克斯引入的粘性项。换句话说,欧拉方程就是不可压缩流体粘性系数为0的特殊情况。如果仔细观察第二项的话,会发现它与热运动的扩散方式非常相似。
(2) 式表现了流体的不可压缩性,是动量守恒方程。
尽管NS方程组也只是一个近似的描述,但仍然使理论流体力学向前跨进了一大步,可谓进入了流体力学史上第一个巅峰时刻。NS方程组是对于过去流体力学历史的总结,也是未来流体发展的惊人预言,近现代理论流体力学的研究纷纷以NS方程组为原始出发点。
还记得令达芬奇着迷的“湍流”吗?NS方程只对稳定流体有效,无法解决“湍流”问题。人们把NS方程能解决的流体问题归纳为光滑流动的“层流”问题,与“湍流”相对应。1883年,雷诺(Reynolds)仔细研究了层流和湍流的运动机制,用非压缩NS方程推导了一个数字,并用这个数字来判定流体到底是层流还是湍流。雷诺数是惯性力(不受外力就做匀速直线运动)和粘性力(流体摩擦力)的比值。当雷诺数比较小时,粘性力大于惯性力,流速的扰动会迅速衰竭,流体运动稳定,是层流;反之,惯性力大于粘性力,微小的扰动会迅速发展成为巨大的扰动,形成不规则的湍流。但是直到今天,湍流仍然难以刻画,湍流的真正形成机制仍然是一个谜团。
1904年,德国物理学家普朗特(Prandtl)提出了“边界层理论”。雷诺数很大的时候,流体内部应该为湍流,但是普朗特认为在接近流体边缘的时候仍然是层流。通过引入“边界层”,可以更好地化简NS方程组。普朗特的另一大贡献是把流体理论派和水力派统一了起来,“边界层理论”就是理论与实践结合的产物。
20世纪初,人们开始研究飞机所需要的空气动力学,普朗特开创了以流体力学为基础的机翼理论,告诉了人们为什么空气可以把如此沉重的飞机送上天空。1911年,匈牙利人冯卡门(von Kármán)成为普朗特的学生,他提出了“卡门涡街”的理论。在流体中设置阻流体,在阻流体下游会产生交错的涡旋,就好像街道两边的街灯一样。
冯卡门在加州理工学院成立了喷气推进实验室,钱学森成为了他的学生。他们共同研究了亚声速流动中压缩性对流体表面压力影响的公式,叫“卡门-钱学森公式”。冯卡门在回忆录《钱学森与红色中国》中评价道:“美国火箭领域中最伟大的天才之一,我的杰出门生”。
1955年,受美国麦卡锡主义的迫害,钱学森回到中国。华裔作家张纯如在《钱学森传》中评价道:“世人对钱学森的印象并非基于他在美国的研究成果,而是由于他遭驱逐后在中国领导科学的成就。他绝对是位杰出的一流科学家,但跟他共事过的人都一再向我强调,他还不够资格跟牛顿或爱因斯坦相提并论,甚至也不及他在加州理工的导师冯卡门。尽管他在理论方面下的功夫,对美国气体动力学的发展极具价值,但他既不曾带动革命,也未能创造新领域。如果他一九五五年就去世,不曾回到中国,他的一生就不可能成为一流传记的素材。”
1961年,美国气象学家洛伦茨(Lorenz)在模拟大气运动的时候为了省事,将本来是6位小数的输入数据截成了3位小数。他发现,0.0001的输入误差能够导致完全相反的结果。洛伦茨建立了新的气候数学模型,这个模型可以得出无穷多个发散的结果。他总结道:天气不停地变动根本就是无法正确预测的。1979年,洛仑兹发表了“蝴蝶效应”演说,认为巴西的蝴蝶振一振翅膀,可以导致德州的一场龙卷风。这就是著名的“混沌理论”。
流体力学的发展自阿基米德开始,历经了上千年的研究。有人说,混沌理论的起始,就是经典科学的结束,但是流体力学还远远没有到完结的时候。即使现代人能够运用计算机来进行复杂的运算,模拟湍流和混沌仍然是不可能的任务。
2000年,美国克雷数学研究院公布了七道历史性的“千禧年难题”,承诺给能够解答任何一题的人一百万美元。其中第六道就是NS方程组的存在性和平滑性证明,目前仍无人认领此奖。即使是相对简单的欧拉方程,目前也无法证明其一定存在解。
翱翔的飞鸟,起伏的波涛,汹涌的火焰,皑皑的冰雪,人类试图寻找隐藏在背后的终极答案。相信有一天,大自然的杰作将以本来面目呈现在我们面前。
1、空气动力学方法对发展相对论的贡献◇ 愚人◇ 2000.9.14 (注:在后面有愚人先生自己编辑的这篇文章)
这篇文章,主要从连续介质和相对论物理的相似性入手,推导了气动方程组和电动力学方程组的相似关系,从而对电动力学方程组的完备性和相对论时空的本质提出了疑问,于是就提出了罗伦兹时空中的Maxwell方程,和迦里洛时空中的连续介质方程只不过是数学表象不同的观点,在这种情况下,就自然提出了基于粘性介质为基础的比基本粒子更低一层的介质背景的假设,然后按照可压缩性的假设,在新的理论框架下给出了亚光速情况下和相对论一样的质能关系表达式,并对在这种理论体系中,可以容纳的跨光速和超光速现象甚至超光速加速器的设计原则进行了探讨.
令人感到欣慰的是,由于前述的和相对论相同的能量质量关系可以用到引力作用上,所以他不仅可以满足狭义相对论的试验验证,而且可以满足至今为止的广义相对论的一切试验验证结果,更进一步,这种这种更低层粒子组成的介质背景的假设,给波粒两相性的统一,量子力学中的测不准原理都可以给出更直观更合理的解释.如不能正常浏览,请看原文
第一部分、 第二部分、 第三部分
2、附录1 关于波动方程的几个数学变换和时空之间的关系◇ 愚人◇ 2000.9.21
3、用流体力学方法发展相对论的设想
作者 西工大 翼型中心(503教研室)杨新铁, yangx@nwpu.edu.cn
德国 慕尼黑卫星定位所 赵双任,0246152574_0001@t_online.de
2000.9.29
为了探讨电磁场和引力场可能存在的介质规律.对于无粘可压缩流动,借助于卡门 - 钱学森在空气动力学中应用的切线虚拟气体法,得出了与质能关系类似的规律.对于可压缩粘性流体和电磁场方程的相同数学结构,作者还缺少明了的结果,但是美国宇航工程师Paul在AIAA Paper99-2606,0562上所发表的平行的表达可以预先把可压缩因子提取到通量项的外面,给出了一种表象的处理方法,本文对Paul在对NS方程提取了可压缩因子以后,又重复引入洛伦兹变换是否必要的问题进行了讨论.尽管如此Paul给出的矢量通量漩涡表达方式是一种新描述,希望这种重新表达的力和漩涡的关系能够对引力场的研究以及对Maxwell方程组的强非线性化带来生机.
若不能正常浏览,可参见原文
空气动力方法在发展相对论中的应用 2001.5.13
作者:杨新铁 (西北工业大学503,翼型中心,西安710072)
赵双任(德国 慕尼黑comroad卫星定位所)
(注:本文经作者亲自编辑,并纠正以前文中的div(V.V/2) 的式子,应该是grad(V.V/2)错误)
摘要 首先针对Navier-Stokes方程和Maxwell方程的相似关系一直缺少一个对应方程的问题分析了原因,借助于引入了非牛顿粘性流体的松弛效应,最后补充上了缺少的这个对应关系,使得不可压的Navier-stokes(后面简称NS)方程和Maxwell方程完全对应了起来.从而引起了利用粘性可压缩流体方程来进行对Maxwell方程进一步的非线性化的探讨.于是先从速势流动开始,研究空气动力学的可压缩波动方程的种种变换,找出一种拟洛伦兹时空变换使它变为不可压流的波动方程.说明了在声学波动方程的数学描述上,可压缩流和不可压缩流加上相对论时空变换只不过是相同客体的不同数学表达.后者是空间上二级精度,时间上一级精度.可压缩因子(1-β2)将根据表达形式不同出现在可压缩流动方程的系数中或者不可压缩加时空变量变换的数学描述的时空伸缩延迟系数中.因为Maxwell方程的波动方程和不可压流是完全一样的,所以也期望上面得到的结论可以引伸到Maxwell方程的讨论中,
为了探讨电磁场和引力场可能存在的介质规律.对于无粘可压缩流动,借助于卡门 - 钱学森在空气动力学中应用的切线虚拟气体法,得出了与质能关系类似的规律.对于可压缩粘性流体和电磁场方程的相同数学结构,作者还缺少明了的结果,但是美国宇航工程师Paul在AIAA Paper99-2606,0562上所发表的平行的表达可以预先把可压缩因子提取到通量项的外面,给出了一种表象的处理方法,本文对Paul在对NS方程提取了可压缩因子以后,又重复引入洛伦兹变换是否必要的问题进行了讨论.尽管如此Paul给出的矢量通量漩涡表达方式是一种新描述,希望这种重新表达的力和漩涡的关系能够对引力场的研究以及对Maxwell方程组的强非线性化带来生机.
这篇文章,主要从连续介质和相对论物理的相似性入手,推导了气动方程组和电动力学方程组的相似关系,从而对电动力学方程组的完备性和相对论时空的本质提出了疑问,于是就提出了罗伦兹时空中的Maxwell方程,和迦里洛时空中的连续介质方程只不过是数学表象不同的观点,在这种情况下,就自然提出了基于粘性介质为基础的比基本粒子更低一层的介质背景的假设,然后按照可压缩性的假设,在新的理论框架下给出了亚光速情况下和相对论一样的质能关系表达式,并对在这种理论体系中,可以容纳的跨光速和超光速现象甚至超光速加速器的设计原则进行了探讨.
令人感到欣慰的是,由于前述的和相对论相同的能量质量关系可以用到引力作用上,所以他不仅可以满足狭义相对论的试验验证,而且可以满足至今为止的广义相对论的一切试验验证结果,更进一步,这种这种更低层粒子组成的介质背景的假设,给波粒两相性的统一,量子力学中的测不准原理都可以给出更直观更合理的解释.如不能正常浏览,请看原文
第一部分、 第二部分、 第三部分
2、附录1 关于波动方程的几个数学变换和时空之间的关系◇ 愚人◇ 2000.9.21
3、用流体力学方法发展相对论的设想
作者 西工大 翼型中心(503教研室)杨新铁, yangx@nwpu.edu.cn
德国 慕尼黑卫星定位所 赵双任,0246152574_0001@t_online.de
2000.9.29
这篇文章,从连续介质和相对论物理的相似性入手,利用可压缩波动方程为例对拟洛伦兹时空和伽利略时空只不过是数学表象不同这个问题作了分析.在这个基础上,进一步推导了气动方程组和电动力学方程组的相似关系,从而对电动力学方程组的完备性和相对论时空的本质提出了疑问,于是就提出了罗伦兹时空中的Maxwell方程,和迦里洛时空中的连续介质方程似乎是数学表象不同的很相似的方程的观点,类似中科院高能所 60年代提出的层子模型阐述了基于粘性介质为基础介质背景的假设,并且按照可压缩性的假设,在新的理论框架下推导出了亚光速情况下和相对论一样的质能关系表达式,并对在这种用介质背景理论修正过理论体系中,可能可以容纳的跨光速和超光速现象以及他们所要遵循的质速关系,如光子静止质量不为零,甚至超光速加速器的设计原则进行了探讨.
令人感到欣慰的是,由于前述改动方程继承了相对论的结果,他和相对论有相同的能量质量关系,这些都可以用到引力作用上,所以他不仅可以满足狭义相对论的试验验证,而且可以满足至今为止的广义相对论的一切试验验证结果,更进一步,这种这种更低层粒子组成的介质背景的假设,给波粒两相性的统一,量子力学中的测不准原理都可以给出更直观更合理的解释.
本文中的这些观点曾经在2000年召开的力学大会物理力学分组会上进行了介绍和讨论,引起了与会代表的极大兴趣和支持.为了更好的联合各个交叉学科,吸引更多的人参加这项研究,我们编辑了此文,以便推动此项研究的开展.
4、空气动力方法在发展相对论中的应用 2001.5.2
摘要 首先针对Navier-Stokes方程和Maxwell方程的相似关系一直缺少一个对应方程的问题分析了原因,借助于引入了非牛顿粘性流体的松弛效应,最后补充上了缺少的这个对应关系,使得不可压的Navier-stokes(后面简称NS)方程和Maxwell方程完全对应了起来.从而引起了利用粘性可压缩流体方程来进行对Maxwell方程进一步的非线性化的探讨.于是先从速势流动开始,研究空气动力学的可压缩波动方程的种种变换,找出一种拟洛伦兹时空变换使它变为不可压流的波动方程.说明了在声学波动方程的数学描述上,可压缩流和不可压缩流加上相对论时空变换只不过是相同客体的不同数学表达.后者是空间上二级精度,时间上一级精度.可压缩因子(1-β2)将根据表达形式不同出现在可压缩流动方程的系数中或者不可压缩加时空变量变换的数学描述的时空伸缩延迟系数中.因为Maxwell方程的波动方程和不可压流是完全一样的,所以也期望上面得到的结论可以引伸到Maxwell方程的讨论中,为了探讨电磁场和引力场可能存在的介质规律.对于无粘可压缩流动,借助于卡门 - 钱学森在空气动力学中应用的切线虚拟气体法,得出了与质能关系类似的规律.对于可压缩粘性流体和电磁场方程的相同数学结构,作者还缺少明了的结果,但是美国宇航工程师Paul在AIAA Paper99-2606,0562上所发表的平行的表达可以预先把可压缩因子提取到通量项的外面,给出了一种表象的处理方法,本文对Paul在对NS方程提取了可压缩因子以后,又重复引入洛伦兹变换是否必要的问题进行了讨论.尽管如此Paul给出的矢量通量漩涡表达方式是一种新描述,希望这种重新表达的力和漩涡的关系能够对引力场的研究以及对Maxwell方程组的强非线性化带来生机.
若不能正常浏览,可参见原文
空气动力方法在发展相对论中的应用 2001.5.13
作者:杨新铁 (西北工业大学503,翼型中心,西安710072)
赵双任(德国 慕尼黑comroad卫星定位所)
(注:本文经作者亲自编辑,并纠正以前文中的div(V.V/2) 的式子,应该是grad(V.V/2)错误)
摘要 首先针对Navier-Stokes方程和Maxwell方程的相似关系一直缺少一个对应方程的问题分析了原因,借助于引入了非牛顿粘性流体的松弛效应,最后补充上了缺少的这个对应关系,使得不可压的Navier-stokes(后面简称NS)方程和Maxwell方程完全对应了起来.从而引起了利用粘性可压缩流体方程来进行对Maxwell方程进一步的非线性化的探讨.于是先从速势流动开始,研究空气动力学的可压缩波动方程的种种变换,找出一种拟洛伦兹时空变换使它变为不可压流的波动方程.说明了在声学波动方程的数学描述上,可压缩流和不可压缩流加上相对论时空变换只不过是相同客体的不同数学表达.后者是空间上二级精度,时间上一级精度.可压缩因子(1-β2)将根据表达形式不同出现在可压缩流动方程的系数中或者不可压缩加时空变量变换的数学描述的时空伸缩延迟系数中.因为Maxwell方程的波动方程和不可压流是完全一样的,所以也期望上面得到的结论可以引伸到Maxwell方程的讨论中,
为了探讨电磁场和引力场可能存在的介质规律.对于无粘可压缩流动,借助于卡门 - 钱学森在空气动力学中应用的切线虚拟气体法,得出了与质能关系类似的规律.对于可压缩粘性流体和电磁场方程的相同数学结构,作者还缺少明了的结果,但是美国宇航工程师Paul在AIAA Paper99-2606,0562上所发表的平行的表达可以预先把可压缩因子提取到通量项的外面,给出了一种表象的处理方法,本文对Paul在对NS方程提取了可压缩因子以后,又重复引入洛伦兹变换是否必要的问题进行了讨论.尽管如此Paul给出的矢量通量漩涡表达方式是一种新描述,希望这种重新表达的力和漩涡的关系能够对引力场的研究以及对Maxwell方程组的强非线性化带来生机.
No comments:
Post a Comment