Friday, March 27, 2015

洛倫茨規範下 ... 四維電流密度是統一了電流密度和電荷密度的四維矢量

Charge density in special relativity[edit]

In special relativity, the length of a segment of wire depends on velocity of observer because of length contraction, so charge density will also depend on velocity. Anthony French[4] has described how the magnetic field force of a current-bearing wire arises from this relative charge density. He used (p 260) a Minkowski diagram to show "how a neutral current-bearing wire appears to carry a net charge density as observed in a moving frame." It turns out the charge density ρ and current density J transform together as a four current vector under Lorentz transformations.


經典電磁理論的協變形式- 維基百科,自由的百科全書

zh.wikipedia.org/zh-hant/经典电磁理论的协变形式
3 連續性方程; 4 洛倫茲力; 5 電磁應力-能量張量的微分方程; 6 洛倫茨規範條件. 6.1 洛倫茨規範下 ... 四維電流密度是統一了電流密度和電荷密度的四維矢量。當單位為 ...

No comments:

Post a Comment