Sunday, July 5, 2015

内在的橡皮膜球面 局部上 和平面是一样的 (更确切的讲,内在的橡皮膜球面的 局部 就是 平面的局部)。 但 内在的橡皮膜球面 和平面 在整体上是不同的

内在的橡皮膜球面 局部上 和平面是一样的 (更确切的讲,内在的橡皮膜球面的 局部 就是 平面的局部)。 但 内在的橡皮膜球面 和平面 在整体上是不同的



几何直观地介绍广义相对论中的时空以及大爆炸模型 (3) [ ] 于:2012-02-07 16:02:44 复:3659016
几何直观地介绍广义相对论中的时空以及大爆炸模型 (3)什么是流形?(续2)
提示:我的最终目的是 帮助大家建立一个大致靠谱的 现代物理中的时空观。但目前我仍在描述 描述时空的 几何语言。 (注意我的断句F)。所以大家要试着不想现实的时空 而专注于我描述的几何语言 本身。F(更多讨论见3.6)
3.1 二维化地描述粘成的橡皮膜球面。(初步)
上一节的要点是 橡皮膜球面 是平面膜粘成的。 尽管我们一开始描述的 两块橡皮膜 不是在平面上的,但我们完全可以逆转 把它们压扁为 平面膜 的过程。 可以认为 我们一开始有的 就是两块平面膜。直到接到 粘合的指示后 再把它们扯到三维空间中 去粘。
平面膜是平面上的东西。 谈平面上的东西 不需要3维空间。 就像谈3维空间中的东西 不需要4维空间 (这是多数3维人所习惯的, 将心比心的为平面人考虑考虑吧F)。 你也许想说 虽然1号2号平面膜 是2维的 并且可以看成是2维平面的一部分,但作为球面的一部分 它们是在三维空间粘的。 似乎 粘 是个3维动作, 于是我们便终究离不开三维空间。
粘 是个 (至少)3维的行为吗?

什么是粘呢? 要描述粘嘛, 就是 说清楚 1号平面膜的啥部位 和2号平面膜的啥部位 被等同起来 以及 被粘(等同)起来的部分是被粘成什么东西。
说清楚 粘,我们认为 粘成的橡皮膜球面就确定了。 没有必要非动手去粘不可。
3.2 二维化地描述粘成的橡皮膜球面。(续)
回到粘的问题。要说清楚 1号平面膜的啥部位 和2号平面膜的啥部位 被粘(等同)起来 不需要三维空间。 因为它们是平面膜从而是平面的一部分。
描述 被粘(等同)起来的部分是被粘成什么东西 需要3维吗?
不需要。 1号膜2号膜的公共部分(粘起来的部分)是一根 首尾相接的带子 (想不通请动手做个模型)。也就是说 被粘起来的部分是被粘成 首尾相接的带子。 带子 是2维的。 而且首尾相接 在2维就能实现。F(首尾相接的带子 可以被 摁平在平面上 成为一个圆环。过程中有拉伸挤压,因为是橡皮膜所以是允许的。)
3.3 二维化地描述粘成的橡皮膜球面。(完成)
但还有一个问题,首尾相接的带子 中间有一个洞。 这意味着它 无法连续地形变为 1号膜或2号膜(他们没有洞)。这里 连续地形变 指的是 可以拉伸压缩移动旋转, 但不可以撕裂或粘合。不许粘合? 我们不是要粘东西吗? 是,但粘东西 是将一些 基本的模块 如1号膜或2号膜 按一定的粘合指示 互相粘起来。 同一个 基本模块 不准 自己粘自己。这规定苛刻吗? 不苛刻。 如果一片膜 就是想 自己粘自己,那么我们就不再称他为基本模块 而是将它分割为 一些更小的基本模块。
我们希望 基本模块 可以被标准化。 即所有的模块 都可以相互间连续形变 从而 在橡皮膜工程师眼中 都一样的好使。F

我们把 1号膜或2号膜 看成是 模块的标准。1号膜和2号膜 都可以 连续形变为 圆盘 (想一下它们的来源就清楚了)。 圆盘 可以被 拉扯为(连续形变为) 长方形。 所以 长方形 也可以作为 标准化的模块。
首尾相接的带子 不是标准化的模块。 但首尾相接的带子 可由两长方形 粘成。 长方形1 的一头 粘 长方形2 的一头, 长方形1 的另一头 粘 长方形2 的另一头。

在粘首尾相接的带子过程中 又出现了 新的 公共部分(粘起来的部分)。有两块, 是两个小长方形。 也就是说 被粘起来的部分是被粘成 两个小长方形。 这意味着 首尾相接的带子 的描述 2维化和标准模块化了。因为 长方形1 和 长方形2 被粘的部分 (长方形1和长方形2的局部) 以及 粘起来后形成的部分(两个小长方形) 都是 2维平面的一部分。而且他们都是 标准模块(长方形)。
就这样 我们发现了 2维化的 标准模块化的 描述 粘成的橡皮膜球面 的办法。F
3.4 请再读一遍 3.1到3.3F
3.5 内在的粘成的橡皮膜球面
数学家 顺着上面的思路, 干脆把描述替换为定义。 即:
取两圆盘状的 平面膜 (1号膜2号膜), 指定 被粘的区域, 再指定 被粘的区域 被粘成为 待定义的 首尾相接的带子。首尾相接的带子 则被定义为 指定 长方形1和长方形2的被粘的区域 以及 指定 粘起来后形成的公共部分 为两个小长方形 后 贯彻 粘合指示 粘出来的东西。
以上一段话 本身也是 一个粘合指示 (一个粘合指示 告诉我们 啥东西的啥部位 和啥东西的啥部位 被粘起来 以及被粘成啥东西)。 按此粘合指示 粘出来的东西 就是
内在的橡皮膜球面
整个定义 与 三维空间 毫无关系。F所以我称它为 “内在的”。内在的橡皮膜球面 没有嵌入 任何其他流形(如三维空间)。
整个过程 本质上就涉及两种流形:平面 内在的橡皮膜球面。 二者什么关系? 内在的橡皮膜球面 是由平面的局部 (标准模块)粘成。 标准模块 (圆盘或长方形)从连续形变的角度看 和平面并无区别(标准模块 朝各方向无限拉伸 就成了平面, 反过来说 标准模块 是缩小了的平面)。 因此我们说 内在的橡皮膜球面 局部上 和平面是一样的 (更确切的讲,内在的橡皮膜球面的 局部 就是 平面的局部)。 但 内在的橡皮膜球面 和平面 在整体上是不同的。F
注意 内在的橡皮膜球面 和平面一样 是2维的, 维数是从局部上就可以决定的。F
再注意 内在的橡皮膜球面 没有 嵌入平面。
挑战:你能从以上定义中 推出 绳子套不住 内在的橡皮膜球面 吗?F(这是以前描述过的 橡皮膜球面的基本属性)。

3.6 一个朴素的道理
我前面讲了“说清楚 粘,我们认为 粘成的橡皮膜球面就确定了。 没有必要非动手去粘不可。” 听上去像废话。F 其实不是。很多人并没有想通这一点。F读了上一节,再回过头来 想想这个道理吧。
这个道理 说的是要区分 数学概念与物理实现。 我开始讲的橡皮膜球面 等等 用了物理实现(你可以动手做模型)来说明数学概念。 这仅仅是为了便于理解, 原则上讲是不必要的。比如我说的 “粘” 不必是物理的粘, 说的实际是 要求 被粘的部分 被等同起来。
你应该能够接受以下思维过程:
第一步 一个数学的球面 或三维空间 是可以脱离 物理世界而被定义出来的 (例如:用代数的方法 比如说勾股定理 定义距离 然后 将球面定义为 到固定点距离为1的 点的集合),
第二步 接下来应该论证 这类数学的空间 (如三维空间)是一个 关于物理空间的 好的 可能的 模型。
第三步 在第二步之后 才考虑 某个具体的数学空间 是否可以在现实物理世界中 以空间或空间一部分 的方式 被实现出来。
我说的在理吧。F
定义数学的球面时, 你不需要 任何看见或感知它的能力, 用纯粹逻辑推理就够了。 这种抽象定义 的东西未必能够 在物理上实现, 但它有 潜在的物理实现的可能。内在的橡皮膜球面 就是这样的。目前为止 它还是 纯粹数学概念。 但后面我将解释, 以他为代表的流形 可以作为 物理空间的模型。所以 它有潜在的物理实现的可能。
在现阶段 (纯粹数学空间阶段), 因为和物理时空 尚无瓜葛,内在的橡皮膜球面 无非就是 平面膜 加上 粘合指示。
3.7 流形
流形是 3.5 的推广。 我们先固定 某一维数的欧式空间 (就想 2,3,4维好了), 然后 发布 一个 只使用 这一维数的欧式空间中的一些部分的 一个粘合指示。这样 定义出来的 粘合物 就叫流形。 它的维数 等于 那欧式空间的维数。
如果 取了 某一维数的欧式空间 把它看成 自身中的一部分 但却采用平凡的粘法:啥也不粘, 我们就得到 该欧式空间本身。 所以 2/3/4 维欧式空间都是流形。(2维欧式空间就是平面)
要点有二:第一,流形不必嵌入(包含于)另一流形。 不要以为它嵌入定义时用的欧式空间。 想一想 内在的粘成的橡皮膜球面。 定义时用的欧式空间是平面。
第二, 局部上 流形等同于 欧式空间(平面,3维空间,4维空间等)一部分,但整体上未必。 比如 内在的粘成的橡皮膜球面 和平面 在整体上是不一样的。
如果理解不了这一段,光理解 内在的(粘成的)橡皮膜球面 也差不多够了。
3.8 第一座高峰
本文的要点是, 一个几何的对象 (流形)是可以 “内在的” 存在的。 它是以 局部的 更基本的几何对象(欧式空间) 粘出来的 一个 整体的东西。它和局部的几何对象 维数一样。
如果到目前为止 你脑子尚未发懵, 那么恭喜你, 你已攀上了 获取较可靠时空观 征途上的 第一座高峰。F 按我的估计, 你需要攀 四座高峰。F 相邻两座之间的落差 大体上 和第一座高峰和你开始时状态的落差 差不多。F
怎么样? 不入虎穴,焉得虎子。F 如果还有勇气和胃口的话, 请继续阅读。
待续


几何直观地介绍广义相对论中的时空以及大爆炸模型 (5) [ ] 于:2012-02-09 21:56:55 复:3659016
几何直观地介绍广义相对论中的时空以及大爆炸模型 (5) 弯曲的度量流形

注意了。 下面我要描述一个非常难的概念:“弯曲”。

5.1 直观的例子
嵌入的二维球面, 一根没绷直的线,圆柱体的侧面,这些应该是弯曲的。 直线, 平面,三维欧氏空间, 这些应该是平直的(即不弯曲)。
5.2 弯曲 是局部的性质
从球面上切一片下来, 这一片是弯曲的。 我们可以说这一片是弯曲的,哪怕我们不知道 他是从球上切下来的。这一片是 球面的局部。所以 弯曲 是局部的性质。
5.3 两种弯曲

圆柱体的侧面 的弯曲 和 嵌入的二维球面 的弯曲 是两种完全不同的弯曲
此话怎讲?F

平面上直角三角形 两直角边的长度平方和 等于 斜边的长度平方。 这叫勾股定理。 勾股定理极其重要, 因为在选了直角坐标系后 我们用它定义两点间的距离。
圆柱体的侧面 可由一张纸卷起来。一张纸本是平面。 在卷的工程中,既无拉伸 也无压缩, 因此平面上三角形 变成了 圆柱体的侧面上的三角形, 各边长度不变,勾股定理成立。 这意味着 在圆柱体的侧面 定义距离 和测距离 在局部上 和在平面上作 是一样的, 哪怕圆柱体的侧面是弯曲的F
对嵌入的二维球面, 这就不对了。(注意 我这里说的是 嵌入的几何球面(2.2),即 他是把嵌入的橡皮膜球面绷圆了的, 在上边画上了标准的经纬线)。 这一点,任何搞地理的都知道:地球仪上的地图 是无法在保持距离不变的情况下 被画在平面上的。这一点哪怕在局部上也是对的 (比如:地球仪上的北半球地图 是无法在保持距离不变的情况下 被画在平面上的。 而北半球 如果看成橡皮膜 是可以摊平在平面上的。)
从勾股定理的角度讲, 几何球面上 “球面三角形”不满足 勾股定理。 取赤道, 东经30度经线(从北极到赤道),东经60度经线(从北极到赤道) 这三根线。 我们得到 几何球面上的一个“三角形”。东经30度经线 垂直于 赤道(看地球仪)。所以他应是“直角边”。于是 东经60度经线 该是 “斜边”。 可是这两条经线 从北极到赤道的距离是一样。显然勾股定理不成立了。 这意味着 在嵌入的几何球面 定义距离 和测距离 哪怕在局部上 和在平面上作 是不一样的。(严格说来:我还没有讲 在嵌入的几何球面上怎么定义距离,但实际上这个距离 就是我们每天用的 不同城市间的距离。 如前所述,这种距离 和平面上基于勾股定理的距离 不一样。)这就是 圆柱体的侧面 的弯曲 和 嵌入的二维球面 的弯曲 的本质不同。
既然有两种弯曲,就应该有两个名字。圆柱体的侧面 的弯曲,我叫它“外在的弯曲”,应为它上面的 (内在的)测距离的事情 和平直的平面(即用勾股定理定义距离的平面)是一样的。相应地,嵌入的几何球面 的弯曲 叫做“内在的弯曲”F
5.4 嵌入的几何球面 等于 嵌入的橡皮膜球面 加上 度量结构
我在5.3讲了嵌入的几何球面。 这和 嵌入的橡皮膜球面 有何关系? 回顾2.2 (或上文),嵌入的几何球面 等于 嵌入的橡皮膜球面 加上 经纬线圈。经纬线圈 是球面上定义或测距离的基础(给定两城市的经纬度,它们的距离就确定了)。更确切地说 如同 平面上我们用直角三角形 作为 定义或测距离的标架并用勾股定理定义距离, 嵌入的几何球面上 我们用 经纬线圈为边的球面三角形 作为 定义或测距离的标架。一个度量结构, 就是制定一组 定义或测距离的标架和从这些标架给出距离的法则你可以把 定义度量结构 理解为 定义距离。F标架和法则的关系其实有些复杂, 见(8)的讨论)。
5.5 内在的弯曲 就是度量结构(距离)和平直的欧氏空间(如平直的平面,平直的三维空间)不一样这里平直的欧氏空间指的是 距离是用 (在平面直角坐标系下)用勾股定理定义的。平直的欧氏空间也叫 有标准度量的欧氏空间。
这是 “内在的弯曲 ” 的定义。按此定义, 嵌入的几何球面 的弯曲 的确是“内在的弯曲”。
注意 内在的弯曲是局部的性质。(见5.2)
5.6 度量结构可以放在内在的橡皮膜球面上
嵌入的橡皮膜球面 给出 内在的橡皮膜球面(见上一篇)。度量结构(距离) 可以在局部上定义, 而局部上内在的橡皮膜球面 就是平面的一部分(平面膜), 于是我们可以在 平面膜和各种标准模块上 指定 度量结构, 然后粘起来。 如果各个局部上的 度量结构(距离) 相互匹配, 我们就拼接出一个整体的 内在的橡皮膜球面上的度量结构。
例如 嵌入的几何球面 给出 嵌入的橡皮膜球面 (忘掉经纬线圈即是了),嵌入的橡皮膜球面又给出 内在的橡皮膜球面。 同时, 我们把 嵌入的几何球面上的度量结构 以嵌入的橡皮膜球面为中转 转放到 内在的橡皮膜球面上。这个度量结构 是由 粘成 内在的橡皮膜球面的各个局部标准模块上的 度量结构 拼接成的。 这些 局部的度量结构 自动相互匹配,因为 在嵌入的橡皮膜球面上 已经自动匹配了 (否则就不会有嵌入的几何球面了)。F
又例如, 你可能觉得 在用平面膜粘成内在的球面时, 如果每块平面膜给的度量结构是平面的标准度量结构(即用勾股定理定义距离), 那么 粘成的内在的球面就有一个 平直的(即不内在弯曲的) 度量结构。 可惜这是不对的,因为 如果你这样做,不同平面膜上的度量结构一定无法匹配(这一点我不解释了)。F
5.7 同一个内在的橡皮膜球面上 可以选择 (无穷多种)不同的度量结构。
很简单。拉伸一个 嵌入的几何球面。 这不改变 嵌入的和内在的橡皮膜球面(橡皮膜球面允许拉伸)。 可这改变了 度量结构 (因为距离被拉长了)。 于是我们可以转移一个 不同的 度量结构 到内在的橡皮膜球面上。
内在的橡皮膜球面 加上一个 特定的 度量结构 叫做 内在的几何球面
5.8 内在的几何球面有 内在的弯曲(度量结构 和平面不一样)。 当然 嵌入的几何球面 也有。询问 嵌入的橡皮膜球面 或 内在的橡皮膜球面 有无内在的弯曲 是毫无意义的。因为 内在的弯曲 是度量结构的性质, 必须先指定度量结构, 然后才能问这问题。F
5.9 外在的弯曲
我其实没有确切地说 什么是外在的弯曲。我不准备确切定义它。 不仅因为这个概念在将来不是很重要,也是因为 这其实就是人们 通常所说的弯曲。 只要你见到一个三维空间中的 直观上弯曲的东西, 那东西就有 外在的弯曲。 外在的弯曲 大体上 就是 以弯曲的方式 嵌入一个 流形(如三维空间)
内在的几何球面有没有外在的弯曲? 这个问题毫无意义。因为 只有先嵌入某个流形,才能问 有没有外在的弯曲(嵌入方式弯曲)。 而 内在的几何球面 不是嵌入的流形。
问 嵌入的几何球面 有没有外在的弯曲。 这问题就有意义了。 在我们讲的例子中 它有外在的弯曲。
5.10 举例
嵌入的几何球面 既有 外在的弯曲 又有 内在的弯曲。 但这两种弯曲是两码事。F
在5.3 中提到的 (嵌入的)圆柱体的侧面(上面的距离是从平直的平面转移上去的) 有 外在的弯曲 没有 内在的弯曲(5.3证明了这一点)。F
在5.1中提到的 没绷直的线 有 外在的弯曲(作为嵌入的线)。如果绷直为直线 就没有外在的弯曲。 内在的线 没有 具有内在弯曲的 度量结构。 这是因为维数太低(想一想,5.3 的论证在一维无法展开)。F
平面 和三维欧式空间(用勾股定理定义距离后)没有 内在弯曲, 但可以定义 有内在弯曲的 度量结构(不均匀的修改距离就行了。)平面 作为嵌入在 三维欧氏空间 的流形 没有外在弯曲。但它可以 以有外在弯曲的方式 嵌入三维欧氏空间 (把代表平面的纸卷一下就行了)。F
5.11 流形的弯曲
所有一切都可以推广到流形上。 你看懂了5.1 到5.10, 就应该明白我下面写的。
1 流形 加上一个 它上面的 特定的 度量结构 叫做 度量流形。 这相当于 在流形上定义了距离
2 是否有内在的弯曲 不是流形的性质,是度量流形的性质。度量流形 可以有内在的弯曲。是否有外在弯曲 不是度量流形的性质
3 嵌入的度量流形 可以既有内在的弯曲 又有外在弯曲。 这两种弯曲没有关系。外在弯曲是 流形外的人 看到的直观的弯曲。
4 对我们来说,重要的是 内在的弯曲它可由在度量流形上 搞距离测量 来确定
5 内在弯曲 外在弯曲 都是局部的性质
FFFFF
待续

No comments:

Post a Comment