(分享)切空间的引入
漫谈几何量子化(四)表象
在场论中,经典相空间一般都是无穷维空间。无穷维缺少有限维的一个重要性质,即平移旋转不变的 Lebesgue 测度的存在性
漫谈几何量子化(七)流形
经典相空间一般都是辛空间,从历史角度来说就是可以写下 Hamilton 运动方程的空间。数学上把量子化总结为从一个辛空间出发构造 Hilbert 空间及其上一系列满足 Heisenberg 交换关系的算子的问题。谐振子的例子里,这个辛空间本质上只是一个向量空间,物理学家往往称这种空间为“拓扑平凡的”。数学上非常感兴趣的是,给一个“拓扑非平凡”的辛空间,量子化到底是什么意思。
一类拓扑非平凡的空间都落在一个比较好的范畴中,它们在数学上就叫“流形”。一个 n 维“流形”是一个拓扑空间,它的每个局部在拓扑上都等价于 的开集,就是说,局部上每个点对应到 的一个点,有一组坐标,这就是局部坐标系。两个局部重叠的地方,就有两个局部坐标系,它们相差一个坐标变换。由以上定义,这些坐标变换自然是拓扑等价(即双方连续的一一对应)。如果其中某些坐标变换还是无穷次可微的,而且它们涉及到的局部可以合起来覆盖整个流形,那么这个流形就是“光滑”的。把所有互为光滑变换的局部坐标系都收集起来,它们叫做这个光滑流形的“容许坐标系”。
在光滑流形上,可以谈论“光滑”函数。一个函数如果在一个容许坐标系下是光滑的,那么在另一个重叠的容许坐标系下也光滑,因为坐标变换是光滑的。通常这么叙述这种好处:光滑性不依赖于局部坐标选取。在流形上,与局部坐标选取无关的“概念”,“性质”,和与局部坐标变换相容的“ 量”,才是有几何意义的。这一点,微分几何的创始人 Gauss, Riemann 应该都心里有数。Einstein 在他的物理学里也强调了这一点。
在流形上没有线性结构,不能把两个点加在一起,也不能连接两个点成为一个“向量”。不过在每一点的局部,就好像在欧氏空间一样,可以在这一点对函数“求方向导数”,这种运算是局部函数空间上的线性算子。以它们为模型的整体对象叫做在该点的“切向量”。在局部上还有一个有趣的东西就是函数在一点的“微分”,
以它为模型的整体对象叫做一个“余切向量”(或者仍然叫做微分)。然后顾名思义,一个“光滑切向量场”就是在每一点有一个切向量,以光滑方式依赖于基点。对偶的概念是“微分 1-形式”,即,光滑余切向量场。在局部坐标系下,切向量场和微分 1-形式通常写成
这里用了 Einstein 求和约定。系数都是局部坐标系里的光滑函数(但不是整体的光滑函数,将随坐标变换而变)。
在每一点上,由方向导数和微分组成的多重线性对象,以整体方式定义以后,叫“张量”。张量场跟前面类似。搞数学的喜欢用整体记号,就像上面那个式子一样,把分量和基写在一起,变换局部坐标的时候,基底和分量同时变,而它们的组合不变,从而左边的字母代表一个不依赖于局部坐标系的量;搞物理的喜欢只写出分量而省略基底,这样的记号明显依赖于局部坐标系
漫谈几何量子化(七)流形
经典相空间一般都是辛空间,从历史角度来说就是可以写下 Hamilton 运动方程的空间。数学上把量子化总结为从一个辛空间出发构造 Hilbert 空间及其上一系列满足 Heisenberg 交换关系的算子的问题。谐振子的例子里,这个辛空间本质上只是一个向量空间,物理学家往往称这种空间为“拓扑平凡的”。数学上非常感兴趣的是,给一个“拓扑非平凡”的辛空间,量子化到底是什么意思。
一类拓扑非平凡的空间都落在一个比较好的范畴中,它们在数学上就叫“流形”。一个 n 维“流形”是一个拓扑空间,它的每个局部在拓扑上都等价于 的开集,就是说,局部上每个点对应到 的一个点,有一组坐标,这就是局部坐标系。两个局部重叠的地方,就有两个局部坐标系,它们相差一个坐标变换。由以上定义,这些坐标变换自然是拓扑等价(即双方连续的一一对应)。如果其中某些坐标变换还是无穷次可微的,而且它们涉及到的局部可以合起来覆盖整个流形,那么这个流形就是“光滑”的。把所有互为光滑变换的局部坐标系都收集起来,它们叫做这个光滑流形的“容许坐标系”。
在光滑流形上,可以谈论“光滑”函数。一个函数如果在一个容许坐标系下是光滑的,那么在另一个重叠的容许坐标系下也光滑,因为坐标变换是光滑的。通常这么叙述这种好处:光滑性不依赖于局部坐标选取。在流形上,与局部坐标选取无关的“概念”,“性质”,和与局部坐标变换相容的“ 量”,才是有几何意义的。这一点,微分几何的创始人 Gauss, Riemann 应该都心里有数。Einstein 在他的物理学里也强调了这一点。
在流形上没有线性结构,不能把两个点加在一起,也不能连接两个点成为一个“向量”。不过在每一点的局部,就好像在欧氏空间一样,可以在这一点对函数“求方向导数”,这种运算是局部函数空间上的线性算子。以它们为模型的整体对象叫做在该点的“切向量”。在局部上还有一个有趣的东西就是函数在一点的“微分”,
以它为模型的整体对象叫做一个“余切向量”(或者仍然叫做微分)。然后顾名思义,一个“光滑切向量场”就是在每一点有一个切向量,以光滑方式依赖于基点。对偶的概念是“微分 1-形式”,即,光滑余切向量场。在局部坐标系下,切向量场和微分 1-形式通常写成
这里用了 Einstein 求和约定。系数都是局部坐标系里的光滑函数(但不是整体的光滑函数,将随坐标变换而变)。
在每一点上,由方向导数和微分组成的多重线性对象,以整体方式定义以后,叫“张量”。张量场跟前面类似。搞数学的喜欢用整体记号,就像上面那个式子一样,把分量和基写在一起,变换局部坐标的时候,基底和分量同时变,而它们的组合不变,从而左边的字母代表一个不依赖于局部坐标系的量;搞物理的喜欢只写出分量而省略基底,这样的记号明显依赖于局部坐标系
帖子貌似要沉了。我这里补充几句解释一下几个概念。
先说等价关系,等价关系就是集上定义的具有自反性,对称性,传递性这三中性质的集的一个分类(或者说剖分)。举个例子比如今天去班里上课的学生,他们可能各有不同,但你总能找到一个关系把他们分类。把他们按衣服颜色分类,蓝色的一类,红色的一类等等。很明显衣服的a同学与自身衣服颜色相同,具有自反性。同学b和同学c颜色相同,则同学c与同学b颜色相同,具有对称性。a与b颜色相同,b与c相同,则a与c相同,具有传递性。再定义一个关系如血缘关系,很明显这不是一个等价关系,比如你和你的父母有共同祖先,但这个关系不能由你传递给你的父母,你的父母本来祖先就不同。等价关系将**分成了两两不相交的**,按等价关系两**要么相等要么不相交,这些**的并等于原**。商集和就是某个等价关系的全体,可以选取等价类的代表元素来表示他,当然附加某些结构,就成为商环,商群,商空间等等。
先说等价关系,等价关系就是集上定义的具有自反性,对称性,传递性这三中性质的集的一个分类(或者说剖分)。举个例子比如今天去班里上课的学生,他们可能各有不同,但你总能找到一个关系把他们分类。把他们按衣服颜色分类,蓝色的一类,红色的一类等等。很明显衣服的a同学与自身衣服颜色相同,具有自反性。同学b和同学c颜色相同,则同学c与同学b颜色相同,具有对称性。a与b颜色相同,b与c相同,则a与c相同,具有传递性。再定义一个关系如血缘关系,很明显这不是一个等价关系,比如你和你的父母有共同祖先,但这个关系不能由你传递给你的父母,你的父母本来祖先就不同。等价关系将**分成了两两不相交的**,按等价关系两**要么相等要么不相交,这些**的并等于原**。商集和就是某个等价关系的全体,可以选取等价类的代表元素来表示他,当然附加某些结构,就成为商环,商群,商空间等等。
这个p点开领域的光滑函数的全体无法构成线性空间,因为f(p)=g(p)=0的函数无限多,不唯一,不满足构成线性空间的条件,所以按上面的等价关系形成的商空间函数牙就是选取了值为0的等价类中的一个函数作为唯一的零元。
Hp是Fp的字空间,Fp中元素v1-v2如果属于Hp,就令v1=v2,这是也是一个等价关系,确定了Fp的一个分类。这个关系下商空间Fp/HP仍是线性空间。
Hp是Fp的字空间,Fp中元素v1-v2如果属于Hp,就令v1=v2,这是也是一个等价关系,确定了Fp的一个分类。这个关系下商空间Fp/HP仍是线性空间。
- 共有1页
- 回复贴: 34
帖子貌似要沉了。我这里补充几句解释一下几个概念。
先说等价关系,等价关系就是集上定义的具有自反性,对称性,传递性这三中性质的集的一个分类(或者说剖分)。举个例子比如今天去班里上课的学生,他们可能各有不同,但你总能找到一个关系把他们分类。把他们按衣服颜色分类,蓝色的一类,红色的一类等等。很明显衣服的a同学与自身衣服颜色相同,具有自反性。同学b和同学c颜色相同,则同学c与同学b颜色相同,具有对称性。a与b颜色相同,b与c相同,则a与c相同,具有传递性。再定义一个关系如血缘关系,很明显这不是一个等价关系,比如你和你的父母有共同祖先,但这个关系不能由你传递给你的父母,你的父母本来祖先就不同。等价关系将**分成了两两不相交的**,按等价关系两**要么相等要么不相交,这些**的并等于原**。商集和就是某个等价关系的全体,可以选取等价类的代表元素来表示他,当然附加某些结构,就成为商环,商群,商空间等等。
先说等价关系,等价关系就是集上定义的具有自反性,对称性,传递性这三中性质的集的一个分类(或者说剖分)。举个例子比如今天去班里上课的学生,他们可能各有不同,但你总能找到一个关系把他们分类。把他们按衣服颜色分类,蓝色的一类,红色的一类等等。很明显衣服的a同学与自身衣服颜色相同,具有自反性。同学b和同学c颜色相同,则同学c与同学b颜色相同,具有对称性。a与b颜色相同,b与c相同,则a与c相同,具有传递性。再定义一个关系如血缘关系,很明显这不是一个等价关系,比如你和你的父母有共同祖先,但这个关系不能由你传递给你的父母,你的父母本来祖先就不同。等价关系将**分成了两两不相交的**,按等价关系两**要么相等要么不相交,这些**的并等于原**。商集和就是某个等价关系的全体,可以选取等价类的代表元素来表示他,当然附加某些结构,就成为商环,商群,商空间等等。
这个p点开领域的光滑函数的全体无法构成线性空间,因为f(p)=g(p)=0的函数无限多,不唯一,不满足构成线性空间的条件,所以按上面的等价关系形成的商空间函数牙就是选取了值为0的等价类中的一个函数作为唯一的零元。
Hp是Fp的字空间,Fp中元素v1-v2如果属于Hp,就令v1=v2,这是也是一个等价关系,确定了Fp的一个分类。这个关系下商空间Fp/HP仍是线性空间。
Hp是Fp的字空间,Fp中元素v1-v2如果属于Hp,就令v1=v2,这是也是一个等价关系,确定了Fp的一个分类。这个关系下商空间Fp/HP仍是线性空间。
式2.19用到了正交曲线坐标系
- wolfking97: “正交曲线坐标系”的说法有点意思,不过也容易误导。这里其实是取了坐标函数u^i给出的由u^i=u^i(p)确定的超曲面经过p点的法向曲线(拉回到欧氏空间就是我们平常xyz坐标下的坐标轴)。这个时候应该还没有度量吧,所以不会有内积和正交的概念。
2012-12-20 06:57回复
当给出y的一个等价关系y~y'时,Γp由此也形成了一个线性空间,这时〈,〉很明显就是一个内积。后面的共轭变换和量子力学算符的共轭转置是一样的,这里是线性空间间的线性变换。
- wolfking97: 通常我们把这个叫做配对,不叫内积。内积是同一个线性空间中两个矢量的一种乘积,上面的<,>是对偶空间中的元素(也叫线性泛函)在空间上的作用。
2012-12-20 07:16回复
- 共有1页
- 回复贴: 34
No comments:
Post a Comment