gauge-invariance (or for that matter diffeomorphism-invariance) as a property of the equations of motion. I.e., a theory is gauge- (diffeomorphism-) invariant if a solution of the equations of motion, when acted on by a gauge transformation (diffeomorphism) yields another solution
Saturday, August 15, 2015
Re: [分析] 想問微分幾何的問題- 看板Math - 批踢踢實業坊
https://www.ptt.cc/bbs/Math/M.1316517842.A.194.html
2011年9月20日 - 14 篇文章 - 5 位作者
如果要講diffeomorphism中文應該完整的表達微分同胚且不能省略"微分"。微分流形的範疇與拓樸空間的範疇有很大的差異,通常拓樸空間並不具有 ...Special Relativity - Google Books Result
https://books.google.com/books?isbn=1447100832
N.M.J. Woodhouse - 2012 - Mathematics
with the energy density of the electromagnetic field and to identify the vector with the energy flux (it is called the Poynting vector). Then we can interpretour ...
philsci-archive.pitt.edu/834/1/gr_gauge.pdf
by S Weinstein - 1998 - Cited by 24 - Related articles
General relativity is invariant under transformations of the diffeomorphism group. .... local gauge transformations by operating on a single particle wavefunction ...[PDF]Symmetry Transformations, the Einstein-Hilbert Action ... - MIT
web.mit.edu/edbert/GR/gr5.pdf
stand gauge symmetry and the parallels between gravity, electromagnetism, and .... is always taken to be a scalar in order to ensure local Lorentz invariance (no.
Massachusetts Institute of Technology
Loading...
[PDF]Local Gauge Invariance - science.uu.nl project csg
www.staff.science.uu.nl/~wit00103/ftip/Ch11.pdf
by a gauge theory, as the theory of general relativity is invariant under con- ... in view of the fact that the invariance under local gauge transformations still.
Utrecht University
Loading...
[PDF]Gravity and Gauge Theory - Philosophy of Science ...
www.philsci.org/.../weinstein.pdf
Philosophy of Science Association
Loading...
by S Weinstein - 1998 - Cited by 24 - Related articles
Jul 31, 1998 - der a group of local transformations, i.e., transformations Which may vary ... that general relativity is not a gauge theory at all, in the specific ...Gauge invariance - Scholarpedia
www.scholarpedia.org/article/Gauge_invariance
Jump to General relativity - Einstein's relativistic theory of gravitation, also known as General ... A gauge transformation corresponds to a change of local ...
Scholarpedia
Loading...
[PDF]Noether's Theorems and Gauge Symmetries
arxiv.org/pdf/hep-th/0009058
arXiv
Loading...
by K Brading - 2000 - Cited by 15 - Related articles
Sep 8, 2000 - invariant under global and/or local gauge transformations leads to ..... here for local gauge symmetry have analogues in General Relativity,.Chemistry, Quantum Mechanics and Reductionism: ...
https://books.google.com/books?isbn=3662113147
H. Primas - 2013 - Science
The requirement of invariance under local phase transformations ... special relativity while local gauge invariance is analogous to Einsteinian general relativity.想問微分幾何的問題
※ 引述《moon0815 (阿呆 )》之銘言: : 我想請問一下 : 微分幾何裡面的同構 同胚 : 代表的是什麼意思呢? : 我看了書 但是不太能領會他的意思... : 希望高手能解釋 提點一下 : 謝謝各位大大 Two topological spaces are homeomorphic (同胚) if there exists a continuous bijection between them whose inverse is also continuous。 假如你有兩個拓樸空間X與Y,如果你可以找到一個X與Y之間的一一對應f並且 f與f^-1均是連續函數,則稱X與Y同胚。同胚在拓樸空間的意義下指的是兩個 拓樸空間可以視為一樣的,儘管兩個看起來(在幾何上)是很不一樣的東西。 舉例來說,橢圓形跟圓形幾何上看起來是不相同,但以拓樸空間這個範疇來 說,可以視為同樣(同胚)的拓樸空間。 因為f與f^-1均是連續,如果U是X中的開集合,那麼f(U)=V會是Y中的開集合。 反之,如果V是Y中的開集合f^-1(V)會是U中的開集合。假如我令Top(X), Top(Y) 分別表示X與Y中的拓樸。那麼利用f與f^-1我們可以建構出 Top(X) <-> Top(Y) 一個一一對應的關係。也就是說同胚的拓樸空間,你看不出來他們拓樸之間的 差別在哪。 同構的話看你指的是哪一種同構關係。 在任何的範疇(Category)中,同構(isomorphic)的物件(objects)指的是具有 相同結構的。在拓樸空間的範疇裡,同構等同於同胚。在微分流形的範疇裡,同 構是微分同胚。在代數裡,群環體有各自同構的概念。例如說f:G-> G'是群同構,指 的是f保持群運算,並且是一個G與G'間的一一對應(one-to-one correspondence)。 觀於範疇相關的概念可以查閱維基網站 http://0rz.tw/TaadM -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 195.37.209.182
→ sleep123 :這邊定義C^0,有些要求到C^1 09/20 20:12
推 jacky7987 :C^1是differmorphism 為了保持流形的好XD 09/20 20:20
→ jacky7987 : (吧 09/20 20:21
→ sleep123 :樓上正解 不過我不知道diffeomorphism中文是什麼 09/20 20:44
微分同胚
通常講同胚的話單純指的是拓樸那個層級。如果要講diffeomorphism中文應該完整的表達
微分同胚且不能省略"微分"。微分流形的範疇與拓樸空間的範疇有很大的差異,通常拓樸
空間並不具有微分結構的。所以當他提同胚的時候,我只會回答,拓樸空間的範疇。
→ sleep123 :初學微分幾何通常不會特別講manifold 09/20 20:45
如果是古典的微分幾何會從曲線曲面開始談。如果是學微分流形的,有些書會從
拓樸流形(topological manifold)開始,由此就會從拓樸流形是局部與歐氏空間
同胚的定義開始。
→ sleep123 :大抵上就三維中的二維拉來拉去,看長得什麼樣子 09/20 20:46
推 WINDHEAD :翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸 09/20 20:48
推 xgcj :YA! 09/20 22:07
※ 編輯: herstein 來自: 195.37.209.182 (09/20 23:39)
推 Lindemann :推很詳細那可以請大大補充一下為何後來需Categor概念 09/21 03:44
推 Lindemann :我的問題是是否這個概念把所有的數學態射都簡化出來? 09/21 03:55
推 Lindemann :應該是說範疇所想定義的大學就一直再用了何必用這詞? 09/21 04:01
→ Lindemann :因為我覺得通常不是念代數幾何看到這類字也會有點怕? 09/21 04:02
推 Lindemann :homeomorphism跟diffeomorphism天差地遠吧Milnor怪
The gauge group versus the diffeomorphism group of a manifold
Let M be an m dimensional differentiable manifold. Define Gauge(M):=C^{\infty}(M, Aut(TM)) to be the group of all (smooth) fiberwise linear transformations of the tangent bundle. This is the natural gauge group of the manifold. If (U, x_1,...,x_m) is a local coordinate system with induced frame on TU then an element of Gauge(U) looks like an invetable matrix g_{ij}(x_1,...,x_m) (with i,j=1,...,m) depending smoothly on the point. If we take a diffeomorphism of M interpreted as a coordinate transformation i.e., taking (U,x_1,...,x_m) into (U,y_1,...,y_m) with y_i(x_1,...,x_m) (with i=1,...,m) smooth functions then the corresponding Jacobi matrix gives rise to an element of Gauge(U) by putting locally g_{ij}(x_1,...,x_m):=dy_i/dx_j.
Hence among gauge transformations there are those which stem from a diffeomorphism hence we get a natural embedding Diff(M) < Gauge(M). The question is: (after appropriate topologies considered) can we say something about the quotient Gauge(M)/Diff(M) i.e., in what extent is the gauge group "bigger" than the diffeomorhism group of a manifold? I would expect that the answer splits into a local answer and then a global one (involving the topology of M). The motivation comes from Kodaira-Spencer deformation theory of complex structures. In this theory two almost complex operators are considered to be equivalent if they differ by a diffeomorphism. However apparently gauge equivalence would be also a natural equivalence relation. Is this beacause simply Kodaira-Spencer theory historically preceded gauge theory? Thanks! | |||||||||||||||||||||
|
What you are trying to express, is the following, imho. For the sake of clarity let us split
Now your question is: Given a section Answer: In fact you can. There is a module (over
| |||||
|