Thursday, November 19, 2015

gr01 Gravity and Gauge Theory S Weinstein differmorphism 三維中的二維拉來拉去,看長得什麼樣 拓樸流形是局部與歐氏空間 induce the same gauge transformation.

https://uwaterloo.ca/philosophy/people-profiles/steven-Weinstein
gauge-invariance (or for that matter diffeomorphism-invariance) as a property of the equations of motion. I.e., a theory is gauge- (diffeomorphism-) invariant if a solution of the equations of motion, when acted on by a gauge transformation (diffeomorphism) yields another solution

Saturday, August 15, 2015

"低速情况下坐标时固有时", wolfking97 常的欧式平面,是个平直的空间。现在我考虑以原点为圆心的单位圆。什么是上面的诱导度规呢?就是普通的弧长。诱导度规是个局部的概念,是局部用切线来逼近子流形上的曲线来定义长度,或者用形象的语言就是局部把曲线拉直了来量长度

Re: [分析] 想問微分幾何的問題- 看板Math - 批踢踢實業坊

https://www.ptt.cc/bbs/Math/M.1316517842.A.194.html
2011年9月20日 - 14 篇文章 - ‎5 位作者
如果要講diffeomorphism中文應該完整的表達微分同胚且不能省略"微分"。微分流形的範疇與拓樸空間的範疇有很大的差異,通常拓樸空間並不具有 ...

Special Relativity - Google Books Result

https://books.google.com/books?isbn=1447100832
N.M.J. Woodhouse - 2012 - ‎Mathematics
with the energy density of the electromagnetic field and to identify the vector with the energy flux (it is called the Poynting vector). Then we can interpretour ...
PDF]Gravity and Gauge Theory∗ - PhilSci-Archive - University of ...
philsci-archive.pitt.edu/834/1/gr_gauge.pdf
by S Weinstein - ‎1998 - ‎Cited by 24 - ‎Related articles
General relativity is invariant under transformations of the diffeomorphism group. .... local gauge transformations by operating on a single particle wavefunction ...


[PDF]Symmetry Transformations, the Einstein-Hilbert Action ... - MIT

web.mit.edu/edbert/GR/gr5.pdf
Massachusetts Institute of Technology
Loading...
stand gauge symmetry and the parallels between gravity, electromagnetism, and .... is always taken to be a scalar in order to ensure local Lorentz invariance (no.


[PDF]Local Gauge Invariance - science.uu.nl project csg

www.staff.science.uu.nl/~wit00103/ftip/Ch11.pdf
Utrecht University
Loading...
by a gauge theory, as the theory of general relativity is invariant under con- ... in view of the fact that the invariance under local gauge transformations still.


[PDF]Gravity and Gauge Theory - Philosophy of Science ...

www.philsci.org/.../weinstein.pdf
Philosophy of Science Association
Loading...
by S Weinstein - ‎1998 - ‎Cited by 24 - ‎Related articles
Jul 31, 1998 - der a group of local transformations, i.e., transformations Which may vary ... that general relativity is not a gauge theory at all, in the specific ...


Gauge invariance - Scholarpedia

www.scholarpedia.org/article/Gauge_invariance
Scholarpedia
Loading...
Jump to General relativity - Einstein's relativistic theory of gravitation, also known as General ... A gauge transformation corresponds to a change of local ...


[PDF]Noether's Theorems and Gauge Symmetries

arxiv.org/pdf/hep-th/0009058
arXiv
Loading...
by K Brading - ‎2000 - ‎Cited by 15 - ‎Related articles
Sep 8, 2000 - invariant under global and/or local gauge transformations leads to ..... here for local gauge symmetry have analogues in General Relativity,.


Chemistry, Quantum Mechanics and Reductionism: ...

https://books.google.com/books?isbn=3662113147
H. Primas - 2013 - ‎Science
The requirement of invariance under local phase transformations ... special relativity while local gauge invariance is analogous to Einsteinian general relativity.

想問微分幾何的問題
※ 引述《moon0815 (阿呆￾ )》之銘言: : 我想請問一下 : 微分幾何裡面的同構 同胚 : 代表的是什麼意思呢? : 我看了書 但是不太能領會他的意思... : 希望高手能解釋 提點一下 : 謝謝各位大大 Two topological spaces are homeomorphic (同胚) if there exists a continuous bijection between them whose inverse is also continuous。 假如你有兩個拓樸空間X與Y,如果你可以找到一個X與Y之間的一一對應f並且 f與f^-1均是連續函數,則稱X與Y同胚。同胚在拓樸空間的意義下指的是兩個 拓樸空間可以視為一樣的,儘管兩個看起來(在幾何上)是很不一樣的東西。 舉例來說,橢圓形跟圓形幾何上看起來是不相同,但以拓樸空間這個範疇來 說,可以視為同樣(同胚)的拓樸空間。 因為f與f^-1均是連續,如果U是X中的開集合,那麼f(U)=V會是Y中的開集合。 反之,如果V是Y中的開集合f^-1(V)會是U中的開集合。假如我令Top(X), Top(Y) 分別表示X與Y中的拓樸。那麼利用f與f^-1我們可以建構出 Top(X) <-> Top(Y) 一個一一對應的關係。也就是說同胚的拓樸空間,你看不出來他們拓樸之間的 差別在哪。 同構的話看你指的是哪一種同構關係。 在任何的範疇(Category)中,同構(isomorphic)的物件(objects)指的是具有 相同結構的。在拓樸空間的範疇裡,同構等同於同胚。在微分流形的範疇裡,同 構是微分同胚。在代數裡,群環體有各自同構的概念。例如說f:G-> G'是群同構,指 的是f保持群運算,並且是一個G與G'間的一一對應(one-to-one correspondence)。 觀於範疇相關的概念可以查閱維基網站 http://0rz.tw/TaadM -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 195.37.209.182
sleep123 :這邊定義C^0,有些要求到C^1 09/20 20:12
jacky7987 :C^1是differmorphism 為了保持流形的好XD 09/20 20:20
jacky7987 : (吧 09/20 20:21
sleep123 :樓上正解 不過我不知道diffeomorphism中文是什麼 09/20 20:44
微分同胚 通常講同胚的話單純指的是拓樸那個層級。如果要講diffeomorphism中文應該完整的表達 微分同胚且不能省略"微分"。微分流形的範疇與拓樸空間的範疇有很大的差異,通常拓樸 空間並不具有微分結構的。所以當他提同胚的時候,我只會回答,拓樸空間的範疇。
sleep123 :初學微分幾何通常不會特別講manifold 09/20 20:45
如果是古典的微分幾何會從曲線曲面開始談。如果是學微分流形的,有些書會從 拓樸流形(topological manifold)開始,由此就會從拓樸流形是局部與歐氏空間 同胚的定義開始。
sleep123 :大抵上就三維中的二維拉來拉去,看長得什麼樣子 09/20 20:46
WINDHEAD :翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸翔爸 09/20 20:48
xgcj :YA! 09/20 22:07
※ 編輯: herstein 來自: 195.37.209.182 (09/20 23:39)
Lindemann :推很詳細那可以請大大補充一下為何後來需Categor概念 09/21 03:44
Lindemann :我的問題是是否這個概念把所有的數學態射都簡化出來? 09/21 03:55
Lindemann :應該是說範疇所想定義的大學就一直再用了何必用這詞? 09/21 04:01
Lindemann :因為我覺得通常不是念代數幾何看到這類字也會有點怕? 09/21 04:02
Lindemann :homeomorphism跟diffeomorphism天差地遠吧Milnor怪


The gauge group versus the diffeomorphism group of a manifold

Let M be an m dimensional differentiable manifold. Define Gauge(M):=C^{\infty}(M, Aut(TM)) to be the group of all (smooth) fiberwise linear transformations of the tangent bundle. This is the natural gauge group of the manifold. If (U, x_1,...,x_m) is a local coordinate system with induced frame on TU then an element of Gauge(U) looks like an invetable matrix g_{ij}(x_1,...,x_m) (with i,j=1,...,m) depending smoothly on the point. If we take a diffeomorphism of M interpreted as a coordinate transformation i.e., taking (U,x_1,...,x_m) into (U,y_1,...,y_m) with y_i(x_1,...,x_m) (with i=1,...,m) smooth functions then the corresponding Jacobi matrix gives rise to an element of Gauge(U) by putting locally g_{ij}(x_1,...,x_m):=dy_i/dx_j.
Hence among gauge transformations there are those which stem from a diffeomorphism hence we get a natural embedding Diff(M) < Gauge(M).
The question is: (after appropriate topologies considered) can we say something about the quotient Gauge(M)/Diff(M) i.e., in what extent is the gauge group "bigger" than the diffeomorhism group of a manifold?
I would expect that the answer splits into a local answer and then a global one (involving the topology of M).
The motivation comes from Kodaira-Spencer deformation theory of complex structures. In this theory two almost complex operators are considered to be equivalent if they differ by a diffeomorphism. However apparently gauge equivalence would be also a natural equivalence relation. Is this beacause simply Kodaira-Spencer theory historically preceded gauge theory?
Thanks!
share|cite|improve this question
8  
The diffeomorphism group is not a subgroup of the gauge group, because a diffeomorphism f induces maps T x MT f(x) M  , rather than from T x M  to itself. In other words, Df is not a map of bundles over X  . – Lucas Culler Sep 20 '10 at 12:05
4  
Something seems a little odd about your map from Diff(M) to Gauge(M). An element of Diff(M) defines an isomorphism T_xM -> T_yM (where x -> y) but an element of Gauge(M) can only define an isomorphism T_xM -> T_xM. – Loop Space Sep 20 '10 at 12:09
1  
The Diff(M) group can be viewed either in an "active" way carrying point x to y or in a passive way changing the coordinate system about a point (the group of coordinate transformations). I use this second picture. – E von Tuzzenthaler Sep 20 '10 at 13:48
1  
Even if you work in coordinates, as you do, observe that your map which associates to a diffeomorphism a gauge transformation is not injective. For example the identity and the shift xx+1  on R  induce the same gauge transformation. – Michael Bächtold Sep 20 '10 at 17:27
1  
Repeating what Andrew Stacey and Lucas Culler have said in more physics-y language: the Jacobi matrix does not transform as a tensor. So it does not define a section of GL(TM). As a trivial example, let M be the disjoint union of two lines. Pick a coordinate x on one of the lines and a coordinate y on the other one. Then there is a diffeomorphism of the form y(x) = x, x(y) = y. The Jacobi matrix near x=0 is 1 in these coordinates. But under the change of coordinates Y = Y(y), which does not change the x coordinates at all, the Jacobi matrix near x=0 changes to Y'(x). – Theo Johnson-Freyd Sep 20 '10 at 18:03

1 Answer 1


What you are trying to express, is the following, imho. For the sake of clarity let us split M  into two manifolds, M  , N  . Consider the 1-jet bundle π M×N :J 1 (M,N)M×N  , which is bundle isomorphic to L(TM,TN)  . Given smooth f:MN  , we get the 1-jet section j 1 f:MJ 1 (M,N)  of π M :J 1 (M,N)M  which satisfies π N j 1 f=f:MN  .
Now your question is: Given a section s:MJ 1 (M,N)  of π M :J 1 (M,N)M  , can you recognize when s=j 1 (π N s)  .
Answer: In fact you can. There is a module (over C  (M)  ) of canonical 1-forms (called contact forms or Lepage forms) on J 1 (M,N)  , (edited) locally generated by dy j k j i dx i   in terms of coordinates (x i ,y j ,k j i )  on J 1 (M,N)  induced by coordinates (x i )  on M  and (y j )  on N  .
  • We have s=j 1 (π N s)  if and only if s  ω=0  for each contact form. See Wikipedia.
Note that the gauge group Gau(M)  acts from the right on J 1 (M,N)  , and Gau(N)  acts from the left.
share|cite|improve this answer
    
Just noticed that your condition, π  M ω=0  , on contact forms can't be correct (the arrows point the wrong way). I think what you wanted was to characterize contact forms in a way that easier to check than the defining condition s  ω=0  for all s=j 1 f  . Perhaps the quickest way to do that is to use adapted coordinates on J 1 (M,N)  , say (x i ,y j ,k j i )  . Then, contact forms are all those that are locally generated by the forms dy j k j i dx i   , as you well know of course. – Igor Khavkine Dec 11 '14 at 23:47

回复:【探讨】相对论中的“刚体”_相对论吧_百度贴吧

tieba.baidu.com/p/1810706956?pn=2 轉為繁體網頁
此时大家都意识到问题的关键是对做加速运动的物体如何定义刚性。就是说 ... 波恩的刚性要求就是,这个诱导度规关于固有时这个参量的导数处处为零。 好了说了一 ...

phymath999: 这种诱导度规其实就是直接指向随动系宁信度 ...

phymath999.blogspot.com/2015/08/blog-post_69.html 轉為繁體網頁
2015年8月13日 - 这种诱导度规其实就是直接指向随动系宁信度,无自信“固有时”作为量度物理进程的参量,这个概念只能针对质点或物质场定义。 时空流形是唯一的, ...

[PDF](=) 2.7

attach3.bdwm.net/attach/boards/PhysicsReview/M.../gx.pdf 轉為繁體網頁
由 高思杰 著作 - ‎1997 - ‎被引用 1 次 - ‎相關文章
在相对论中,观者是一条以固有时为参数的类时曲线,参考系是一个类时线汇,其中每. 一. 类时线代表 ... 时空度规g 在三上的诱导度规h 就描述该三维空间的几何.然.

关于时钟佯谬 - 卢昌海个人主页

www.changhai.org/articles/science/.../clock_paradox.php 轉為繁體網頁
2011年5月15日 - 正是这种度规改变抵消了“曲”、 “直” 互换的影响, 使得长度不变, 从而保证了时钟佯 .... 对于类时曲线来说, 则常被称为“原时” 或“固有时” (proper time)。 .... 是等效原理 的体现), 其度规则是可以局部地由Minkowski 度规诱导出来的。

[PDF]刚性参考系与转盘几何*

www.paper.edu.cn/.../journal-0476-0301(1997)02-0211-0... 轉為繁體網頁
在相对论中,观者是一条以固有时为参数的类时曲线,参考系必是一个类时线汇,其中每. 一类时线 ... 时空度规gab 在Z 上的诱导度规hab 就描述该三维空间的几何.然.

[PDF]Beltrami_de Sitter时空和de Sitter不变的狭义相对论

metc.gdut.edu.cn/ddlx/xgzs/xslw/xyxdllw/1.pdf 轉為繁體網頁
由 郭汉英 著作 - ‎2005 - ‎被引用 11 次 - ‎相關文章
把狭义相对性原理推广到非零常曲率时空,在具有Beltrami 度规的de SitterΠ反de Sitter 时空中建立 ... 除了Beltrami 坐标时同时性之外,对于共动观测, 还可以取固有时同时性;此时,Beltrami 度规成为 ...... 延迟函数、位移矢量和在3 维超曲面∑c 给出诱导.

讲座信息-广东天文学会

www.gdtw.org.cn/NewsDetail.aspx?code=0906&id=757 轉為繁體網頁
2012年6月12日 - 1.3.1 世界线与时空图,1.3.2 观者和固有时,1.3.3 参考系和坐标 ... 的诱导度规;超曲面上的投影映射;微分形式及其外微分;适配体元;诱导体元;对偶 ...

[PDF]Beltrami-de Sitter 时空和de Sitter 不变的狭义相对论! - 物理学报

wulixb.iphy.ac.cn/EN/article/downloadArticleFile.do?... 轉為繁體網頁
由 G Han-Ying 著作 - ‎2005 - ‎被引用 37 次 - ‎相關文章
2005年6月6日 - 把狭义相对性原理推广到非零常曲率时空,在具有Beltrami 度规的de Sitter/反de ... 除了Beltrami 坐标时同时性之外,对于共动观测,还可以取固有时同时性;此时,Beltrami 度规成为 ...... 延迟函数、位移矢量和在3 维超曲面!c 给出诱导.

No comments:

Post a Comment